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Abstract: The increasing digitization of power grid infrastructure has introduced cybersecurity vulnerabilities requiring 

robust anomaly detection mechanisms. This study presents a large-scale empirical evaluation framework for 

characterizing the behavior of six unsupervised anomaly detection paradigms under diverse smart grid attack scenarios. 

The evaluation encompasses self-supervised contrastive learning with temporal convolutional encoders alongside 

established methods including Isolation Forest, One-Class Support Vector Machine, Autoencoder, Deep Support Vector 

Data Description, and Local Outlier Factor. Experiments were conducted across two complementary datasets comprising 

over 2.1 million power consumption records representing both synthetic perturbations and realistic attack scenarios with 

seven distinct threat types. Rather than identifying a universally optimal method, this study characterizes scenario-

dependent performance patterns and operational trade-offs. Results demonstrate that all evaluated paradigms achieve 

Area Under the Receiver Operating Characteristic Curve values exceeding 0.90 on realistic attack scenarios, with F1 

scores ranging from 0.637 to 0.806 depending on method and attack characteristics. The contrastive learning paradigm 

achieved F1 scores of 0.449 and 0.786 on synthetic and realistic scenarios respectively. An ablation study examining 

temporal augmentation strategies revealed marginal performance variations, suggesting that the learning objective rather 

than augmentation design drives representation quality. These findings establish reproducible benchmarks, characterize 

the strengths and limitations of each paradigm under different deployment conditions, and provide practical guidance for 

selecting anomaly detection approaches based on specific operational requirements rather than aggregate performance 

metrics. 

Index Terms: Smart grid security, Anomaly detection, Unsupervised learning, Empirical evaluation, Cybersecurity 

benchmarking, Critical infrastructure. 

I. INTRODUCTION 

Modern power grid infrastructure has undergone substantial transformation through the integration of digital 

communication technologies, creating interconnected smart grid systems that enable bidirectional energy flow, real-time 

monitoring, and automated demand response capabilities [1]. While these advancements deliver significant operational 

benefits including improved efficiency, reduced costs, and enhanced reliability, they simultaneously introduce 

cybersecurity vulnerabilities that threaten the stability of critical infrastructure serving millions of consumers [2]. The 

convergence of operational technology with information technology networks has expanded the attack surface available 

to malicious actors, making power systems increasingly susceptible to sophisticated cyber intrusions that can cause 

widespread service disruptions, economic damage, and potential safety hazards [3]. 

The cybersecurity challenges facing smart grids are particularly acute due to the unique characteristics of power system 

operations. Unlike conventional information technology environments where brief service interruptions may be tolerable, 

power grid disruptions can cascade rapidly across interconnected systems, potentially affecting hospitals, transportation 

networks, and other critical services [4]. Furthermore, the legacy components prevalent in existing grid infrastructure 

were designed without cybersecurity considerations, creating integration challenges when deploying modern protection 

mechanisms [5]. These factors necessitate the development of anomaly detection approaches specifically tailored to the 

operational constraints and threat landscape of power grid environments. 

Anomaly detection in smart grid systems presents distinct technical challenges that differentiate it from conventional 

network intrusion detection. Power grid telemetry data exhibits complex temporal patterns reflecting load variations, 

seasonal effects, and operational state transitions that must be distinguished from malicious manipulations [6]. False data 
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injection attacks, where adversaries corrupt sensor measurements to mislead control systems, have emerged as 

particularly concerning threats due to their potential to cause physical damage while evading traditional detection 

mechanisms [7]. The development of detection methods capable of identifying such attacks without extensive labeled 

training data remains an active research challenge. 

Traditional supervised learning approaches to anomaly detection require substantial quantities of labeled attack data for 

training, which is often unavailable in operational environments where attacks are rare and novel threat variants 

continually emerge [8]. This limitation has motivated interest in unsupervised and self-supervised learning paradigms 

that can learn normal operational patterns from unlabeled data and identify deviations indicative of potential attacks [9]. 

Multiple paradigms have emerged for this task, each embodying different assumptions about data structure and anomaly 

characteristics. Understanding how these paradigms behave across different attack scenarios is essential for informed 

deployment decisions. 

Prior research on smart grid anomaly detection has explored diverse methodological approaches. Statistical methods 

based on hypothesis testing and change point detection offer interpretable results but may struggle with the nonlinear 

dynamics characteristic of modern power systems [10]. Machine learning approaches including Support Vector Machines 

and ensemble methods have shown improved detection capabilities but often require careful feature engineering [11]. 

Deep learning methods, particularly autoencoders and recurrent neural networks, can automatically learn relevant 

features but may require substantial computational resources and training data [12]. Despite this methodological diversity, 

systematic empirical evaluations characterizing performance behavior across different attack scenarios and data 

conditions remain limited. 

A significant gap in existing literature concerns the characterization of detection paradigm behavior across diverse attack 

scenarios. Many studies report aggregate performance metrics on single datasets, providing limited insight into how 

methods behave under varying conditions [13]. The distinction between synthetic perturbations and realistic attack 

scenarios has received insufficient attention, despite evidence that performance patterns can differ substantially across 

these conditions [14]. Additionally, the factors influencing self-supervised contrastive learning effectiveness for time 

series anomaly detection require systematic investigation. 

This study addresses these gaps through a comprehensive empirical evaluation framework examining six anomaly 

detection paradigms across diverse attack scenarios. The contributions of this work are as follows: 

First, this study establishes a reproducible benchmarking framework for evaluating unsupervised anomaly detection 

paradigms in smart grid security contexts. The framework encompasses standardized preprocessing, consistent evaluation 

protocols, and multiple complementary metrics enabling systematic characterization of paradigm behavior. 

Second, the evaluation characterizes scenario-dependent performance patterns across synthetic perturbations and realistic 

attack scenarios. This characterization reveals how different paradigms exhibit distinct strengths and limitations 

depending on attack characteristics, providing insights beyond aggregate performance rankings. 

Third, an ablation study examining temporal augmentation strategies for contrastive learning offers insights into the 

factors driving representation quality for time series anomaly detection, informing future methodological development. 

Rather than identifying a single optimal method, this evaluation provides empirical evidence supporting context-aware 

paradigm selection based on specific deployment requirements, attack characteristics, and operational constraints. 

II. RELATED WORKS 

A. Smart Grid Security and Attack Detection 

Research on smart grid cybersecurity has expanded substantially over the past decade, driven by increasing concerns 

about infrastructure vulnerability and several high-profile incidents demonstrating real-world attack feasibility [15]. 

Liang, Weller, Zhao, Luo, and Dong provided a comprehensive survey of false data injection attacks, characterizing 

threat models and reviewing detection approaches spanning statistical methods, machine learning, and game-theoretic 

formulations [16]. Their analysis highlighted the challenge of detecting stealthy attacks designed to evade traditional bad 

data detection mechanisms while remaining physically realizable within power system constraints. 

Wang, Lu, Qin, Sun, and Zhang examined machine learning approaches for cyber attack detection in smart grids, 

evaluating supervised classifiers including random forests, support vector machines, and neural networks on simulated 

attack data [17]. While demonstrating promising detection accuracy, their evaluation relied exclusively on labeled attack 
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data, limiting applicability to scenarios where such labels are unavailable. Ozay, Esnaola, Yarman Vural, Kulkarni, and 

Poor extended this work by investigating sparse optimization techniques for detecting attacks targeting state estimation, 

achieving robust detection under various attack magnitudes [18]. 

Recent work has increasingly focused on deep learning methods for power system anomaly detection. Sakhnini, 

Karimipour, and Dehghantanha applied recurrent neural networks to detect intrusions in industrial control systems, 

demonstrating improved performance on benchmark datasets [19]. However, their approach required supervised training 

with labeled attack examples. He, Yan, Wen, Tian, and Cheng proposed a distributed intrusion detection framework using 

federated learning to address data privacy concerns in multi-utility environments, though scalability limitations were 

noted for large-scale deployments [20]. 

B. Unsupervised Anomaly Detection Paradigms 

Unsupervised anomaly detection paradigms have received considerable attention due to their ability to identify anomalies 

without labeled training data. Liu, Ting, and Zhou introduced Isolation Forest, an efficient ensemble method that isolates 

anomalies through recursive random partitioning, demonstrating linear time complexity and strong performance across 

diverse domains [21]. Scholkopf, Platt, Shawe-Taylor, Smola, and Williamson developed One-Class Support Vector 

Machine, extending the support vector framework to learn a decision boundary enclosing normal data in high-

dimensional feature space [22]. These classical methods remain widely used due to their computational efficiency and 

interpretability. 

Deep learning approaches to unsupervised anomaly detection have emerged as powerful alternatives capable of learning 

complex patterns from raw data. Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, Muller, and Kloft proposed 

Deep Support Vector Data Description, combining deep representation learning with hypersphere minimization to jointly 

learn features and anomaly scoring [23]. Autoencoder architectures trained to minimize reconstruction error have been 

widely applied, with anomalies identified as samples exhibiting high reconstruction loss [24]. Stow and Stewart 

investigated the stability of explainable machine learning methods including SHAP under data corruption conditions, 

providing insights relevant to ensuring reliable anomaly detection in noisy environments [25]. 

Local Outlier Factor, introduced by Breunig, Kriegel, Ng, and Sander, detects anomalies by comparing local density 

estimates around each sample to those of its neighbors, effectively identifying samples in low-density regions [26]. This 

density-based approach offers advantages for detecting clustered anomalies but may exhibit different behavior with high-

dimensional data. Stow examined machine learning frameworks incorporating explainability mechanisms for transparent 

decision making, demonstrating approaches relevant to interpreting anomaly detection results [27]. 

C. Contrastive Learning for Time Series 

Contrastive learning has emerged as a powerful self-supervised paradigm for learning representations without labeled 

data. Chen, Kornblith, Norouzi, and Hinton introduced SimCLR, demonstrating that simple augmentation strategies 

combined with contrastive loss functions can learn effective representations on image classification tasks [28]. He, Fan, 

Wu, Xie, and Girshick developed Momentum Contrast, introducing a memory bank mechanism to enable large batch 

contrastive learning with limited computational resources [29]. 

Extension of contrastive learning to time series domains has proceeded more recently. Franceschi, Dieuleveut, and Jaggi 

proposed a contrastive approach for time series representation learning, demonstrating improved classification 

performance across multiple benchmark datasets [30]. Eldele, Ragab, Chen, Wu, Kwoh, Li, and Guan developed time 

series specific augmentation strategies for contrastive learning, addressing the challenge that augmentations effective for 

images may not transfer directly to temporal data [31]. Yue, Wang, Duan, Yang, Huang, Tong, and Xu introduced 

TS2Vec, a hierarchical contrastive framework achieving strong results on time series forecasting and classification tasks 

[32]. 

Despite these advances, systematic characterization of contrastive learning behavior for anomaly detection in critical 

infrastructure domains remains limited. Stow investigated minimum demand period vulnerabilities through multi-scale 

pattern analysis of power grid data, demonstrating the potential for advanced analytical methods in grid security 

applications [33]. The present study addresses this gap by examining contrastive learning alongside established 

paradigms specifically for smart grid anomaly detection. 

D. Research Gap 

While substantial progress has been made in both smart grid security and unsupervised learning, systematic empirical  
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evaluations characterizing paradigm behavior across diverse scenarios remain limited. First, most studies report aggregate 

metrics without examining how performance varies across attack types and data conditions. Second, the distinction 

between synthetic perturbations and realistic attack scenarios requires investigation to understand deployment 

implications. Third, factors influencing contrastive learning effectiveness for power grid data warrant systematic study. 

This work addresses these gaps through a comprehensive evaluation framework providing scenario-dependent 

characterization rather than aggregate rankings.  

 

III. METHODOLOGY 

A. Problem Formulation 

The anomaly detection problem addressed in this study is formulated as an unsupervised learning task where the objective 

is to identify time windows containing abnormal patterns indicative of potential cyber attacks or system faults. Given a 

multivariate time series X representing power grid measurements, the goal is to learn a function f: X → [0,1] that assigns 

anomaly scores to each temporal window, where higher scores indicate greater likelihood of anomalous behavior. The 

unsupervised formulation reflects practical deployment scenarios where labeled attack data is unavailable during model 

training. 

Formally, let X = {x₁, x₂, ..., xₙ} denote a sequence of n measurement vectors, where each xᵢ ∈ ℝᵈ represents d sensor 

readings at time step i. The preprocessing stage segments this sequence into non-overlapping windows of fixed length w, 

producing a set of windows W = {W₁, W₂, ..., Wₘ} where each Wⱼ ∈ ℝʷˣᵈ. Each anomaly detection paradigm learns 

representations of normal operating patterns from windows assumed to be predominantly attack-free, then identifies test 

windows deviating significantly from learned normal patterns as potential anomalies. 

B. Data Sources and Preprocessing 

Two complementary datasets were employed to evaluate detection paradigms across different attack characteristics and 

data properties. The first dataset comprises the UCI Individual Household Electric Power Consumption dataset, 

containing over 2 million records of residential power measurements collected at one-minute resolution over 

approximately four years. Seven features were extracted including global active power, global reactive power, voltage, 

global intensity, and three sub-metering measurements. Synthetic perturbations were injected into this dataset following 

established protocols to create controlled evaluation scenarios. 

The second dataset was constructed to emulate characteristics documented in the Mississippi State University and Oak 

Ridge National Laboratory power system testbed literature, incorporating measurements typical of Phasor Measurement 

Unit telemetry including voltage magnitudes, current magnitudes, phase angles, active and reactive power flows, and 

system frequency. This simulated dataset comprises 100,000 samples with 13 features. Seven attack types representing 

realistic threat scenarios were implemented: short-circuit faults, open-circuit conditions, remote tripping command 

injection, false data injection, replay attacks, scaling attacks, and random noise injection. It should be noted that this 

dataset was simulated based on documented characteristics rather than obtained from the original testbed. 

TABLE I 

DATASET CHARACTERISTICS 

Property UCI Power Simulated PMU 

Total Samples 2,075,259 100,000 

Features 7 13 

Normal Samples 1,763,971 (85%) 85,000 (85%) 

Attack Samples 311,288 (15%) 15,000 (15%) 

Train Windows 47,038 2,265 

Test Windows 34,587 1,666 

Perturbation Types 5 Synthetic 7 Emulated 

 

Preprocessing involved several stages to ensure data quality and consistency. Missing values were handled through 

forward-fill interpolation followed by backward-fill for any remaining gaps. All features were normalized using standard 

scaling to zero mean and unit variance, ensuring comparable magnitudes across different measurement types. The 
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normalized data was segmented into windows of 60 time steps with non-overlapping stride for test evaluation and 

overlapping stride of 30 steps for training data augmentation. Table I summarizes the key characteristics of both datasets. 

Perturbation injection for the UCI dataset followed a clustered approach where perturbations were applied to contiguous 

windows rather than scattered individual time points. This design ensures that window-level labels accurately reflect 

perturbation presence and avoids the label noise that would result from scattered perturbations contaminating nearly all 

windows. Five synthetic perturbation types were implemented: bias injection adding constant offsets, scaling 

perturbations multiplying measurements by anomalous factors, ramp perturbations introducing gradual drifts, pulse 

perturbations adding transient spikes, and random noise perturbations corrupting measurements with Gaussian noise. 

C. Evaluation Framework 

The evaluation framework employs self-supervised contrastive learning to learn representations of normal power grid 

operational patterns, subsequently using these representations for anomaly detection through distance-based scoring. The 

framework comprises four primary stages: data augmentation, temporal encoding, contrastive learning, and anomaly 

detection. Fig. 1 illustrates the complete methodology framework. 

 

Fig. 1. Self-supervised contrastive learning framework for smart grid anomaly detection. 

The data augmentation stage generates multiple views of each input window through temporal transformations designed 

to preserve semantic content while introducing controlled variations. Three augmentation strategies were implemented: 

jittering adds Gaussian noise with standard deviation of 0.1 to simulate measurement uncertainty, scaling multiplies 

window values by random factors within 20% of unity to capture load variation patterns, and masking randomly zeroes 

15% of time steps to encourage learning of robust temporal features. During training, two independently augmented 

views are generated for each input window. 

The temporal convolutional encoder architecture processes augmented windows through a series of one-dimensional 

convolutional layers with batch normalization and rectified linear unit activations. The architecture comprises three 

convolutional blocks, each containing a convolutional layer with increasing filter counts of 64, 128, and 256, followed 

by batch normalization, activation, and max pooling operations that progressively reduce temporal resolution while 

expanding representational capacity. Global average pooling aggregates the final convolutional output across the 

temporal dimension, producing a fixed-dimensional representation regardless of input window length. A projection head 

consisting of two fully connected layers with intermediate nonlinearity maps the encoder output to a 256-dimensional 

embedding space where contrastive loss is computed. 

The contrastive learning objective employs the Normalized Temperature-scaled Cross Entropy loss (NT-Xent) to 

maximize agreement between embeddings of differently augmented views of the same window while minimizing 

agreement between embeddings of different windows. For a batch of N windows, augmentation produces 2N 

embeddings, and the loss is computed as: 

ℓᵢ,ⱼ = -log[exp(sim(zᵢ, zⱼ)/τ) / Σₖ≠ᵢ exp(sim(zᵢ, zₖ)/τ)]     (1) 
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where zᵢ and zⱼ are embeddings of two views of the same window, sim(·,·) denotes cosine similarity, and τ is a temperature 

parameter controlling the concentration of the distribution. The temperature was set to 0.5 based on preliminary 

experiments. Training employed the Adam optimizer with learning rate of 0.001, batch size of 256, and cosine annealing 

learning rate schedule over a maximum of 50 epochs with early stopping based on validation loss with patience of 10 

epochs. 

Anomaly detection in the trained framework proceeds by extracting embeddings from the encoder without the projection 

head, as the encoder representations capture more general features suitable for downstream tasks. The Mahalanobis 

distance from each test embedding to the centroid of normal training embeddings provides the anomaly score, accounting 

for feature correlations in the embedding space. A threshold at the 95th percentile of scores from normal validation data 

determines the binary classification boundary. Fig. 2 presents comprehensive dataset characteristics and experimental 

configuration. 

 

Fig. 2. Dataset characteristics including feature distributions, attack type breakdowns, and experimental configuration. 

D. Evaluated Paradigms 

Six anomaly detection paradigms were evaluated, representing diverse algorithmic approaches and underlying 

assumptions. Isolation Forest constructs an ensemble of random trees that isolate observations through recursive 

partitioning, with anomalies requiring fewer partitions to isolate due to their distinctiveness. One-Class Support Vector 

Machine learns a decision boundary in kernel-induced feature space enclosing the majority of training data, classifying 

points outside this boundary as anomalies. Autoencoder neural networks trained to minimize reconstruction error identify 

anomalies as samples with high reconstruction loss, indicating patterns not well represented in learned encodings. Deep 

Support Vector Data Description combines deep feature learning with hypersphere minimization, jointly optimizing 

network parameters and the hypersphere center to enclose normal data. Local Outlier Factor computes anomaly scores 

based on local density deviation, comparing the density around each sample to densities of its neighbors. Contrastive 
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Learning with temporal convolutional encoders learns representations through self-supervised objectives as described 

above. 

All paradigms were trained exclusively on normal data to ensure consistent evaluation conditions. Hyperparameters were 

set based on established recommendations: Isolation Forest used 100 estimators with contamination parameter matching 

the expected anomaly ratio, One-Class Support Vector Machine employed radial basis function kernel with automatic 

gamma selection, Autoencoder architectures matched the encoder depth of the contrastive model, Deep Support Vector 

Data Description used identical network architecture with hypersphere loss, and Local Outlier Factor used 20 neighbors 

with novelty detection enabled. 

E. Evaluation Metrics 

Paradigm behavior was characterized using multiple complementary metrics to provide comprehensive assessment. 

Precision measures the proportion of predicted anomalies that are true anomalies, reflecting the reliability of positive 

predictions. Recall measures the proportion of true anomalies that are correctly identified, indicating detection sensitivity. 

F1 score provides the harmonic mean of precision and recall, balancing these objectives. Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC) quantifies discrimination ability across all possible threshold settings, with 

values approaching 1.0 indicating strong separation between normal and anomalous distributions. Area Under the 

Precision-Recall Curve (AUC-PR) provides additional insight particularly relevant for imbalanced datasets where the 

positive class is rare. Statistical significance of performance differences was assessed using the Mann-Whitney U test 

comparing anomaly score distributions. 

IV. EMPIRICAL RESULTS AND ANALYSIS 

A. Training Dynamics 

Contrastive models were trained on normal operational data from each dataset, with training dynamics monitored through 

loss trajectories. Fig. 3 presents the training and validation loss curves for both datasets. On the UCI dataset, training 

proceeded for the full 50 epochs with gradual convergence, achieving final training and validation losses of 4.28 and 4.42 

respectively. The modest gap between training and validation loss indicates appropriate model capacity without 

substantial overfitting. 

Fig. 3. 

Training and validation loss curves for contrastive learning models on UCI and simulated PMU datasets. 

The simulated PMU dataset exhibited faster initial convergence with early stopping triggered at epoch 20, reflecting the 

smaller dataset size and corresponding reduced training time to convergence. Validation loss showed minor fluctuations 

after epoch 15, attributable to the limited validation set size of 565 windows introducing variance in batch-level loss 

estimates. The early stopping mechanism appropriately selected the model weights achieving minimum validation loss. 

B. Performance Characterization Across Scenarios 

Table II presents the performance metrics for all six paradigms across both datasets. The results reveal scenario-dependent 

patterns that vary by paradigm and attack characteristics rather than a single universally optimal approach. 
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TABLE II 

PERFORMANCE METRICS ACROSS PARADIGMS AND SCENARIOS 

Paradigm UCI F1 UCI AUC PMU F1 PMU AUC 

Contrastive Learning 0.449 0.741 0.786 0.921 

Isolation Forest 0.460 0.779 0.637 0.925 

One-Class SVM 0.496 0.714 0.708 0.919 

Autoencoder 0.543 0.792 0.769 0.908 

Deep SVDD 0.611 0.866 0.806 0.944 

Local Outlier Factor 0.393 0.791 0.668 0.946 
 

On the UCI dataset with synthetic perturbations, F1 scores ranged from 0.393 (Local Outlier Factor) to 0.611 (Deep 

SVDD), while AUC-ROC values ranged from 0.714 (One-Class SVM) to 0.866 (Deep SVDD). The contrastive learning 

paradigm achieved F1 of 0.449 and AUC-ROC of 0.741 in this scenario. 

Performance patterns exhibited notable differences on the simulated PMU dataset with emulated realistic attacks. All 

paradigms achieved AUC-ROC values exceeding 0.90, indicating strong discrimination capability when attacks exhibit 

characteristics more representative of real threats. F1 scores ranged from 0.637 (Isolation Forest) to 0.806 (Deep SVDD). 

The contrastive learning paradigm achieved F1 of 0.786 and AUC-ROC of 0.921 on this dataset. Fig. 4 visualizes the 

Receiver Operating Characteristic curves illustrating discrimination patterns across paradigms. 

 
Fig. 4. Receiver Operating Characteristic curves illustrating discrimination patterns across paradigms on synthetic and 

realistic scenarios. 

Fig. 5 illustrates the scenario-dependent performance variations across paradigms. All paradigms exhibited substantial 

F1 score changes between datasets, with differences ranging from 0.18 to 0.34. This variation highlights the importance 

of evaluating paradigms across multiple scenarios rather than relying on single-dataset metrics. 
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Fig. 5. Scenario-dependent F1 score patterns illustrating performance variations between synthetic and realistic attack 

scenarios. 

C. Representation Space Analysis 

Visualization of learned representations provides insight into the structure captured by the contrastive encoder. Fig. 6 

displays t-distributed Stochastic Neighbor Embedding (t-SNE) projections of test embeddings colored by anomaly labels. 

On the UCI dataset, normal and anomalous samples exhibit partial overlap in the embedding space. The simulated PMU 

dataset shows clearer structural separation, with anomalous samples forming distinct clusters at the periphery of the 

normal data distribution. 

Fig. 6. 

t-SNE visualization of contrastive encoder embeddings showing normal (blue) and anomalous (red) samples. 

D. Ablation Study on Augmentation Strategies 

The ablation study examined the contribution of different augmentation strategies to contrastive learning behavior. Table 

III presents results for models trained with no augmentation, individual augmentation types, and combined augmentations 

on the simulated PMU dataset. 
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TABLE III 

ABLATION STUDY ON AUGMENTATION STRATEGIES 

Augmentation F1 Score AUC-ROC AUC-PR 

None 0.869 0.998 0.993 

Jitter 0.873 0.999 0.996 

Scaling 0.867 0.997 0.990 

Masking 0.871 0.997 0.994 

Combined 0.873 0.999 0.996 
 

Results indicate marginal variation across augmentation configurations. F1 scores ranged from 0.867 to 0.873, a 

difference of 0.006. Jitter and combined augmentations achieved the highest F1 scores, though the practical significance 

of this difference is limited given the narrow range. Fig. 7 visualizes these ablation results. 

 

Fig. 7. Ablation study results illustrating F1 score and AUC-ROC variations across augmentation strategies. 

E. Statistical Analysis 

Mann-Whitney U tests comparing anomaly score distributions confirmed statistically significant differences between the 

contrastive learning paradigm and each baseline in all cases, with p-values below 0.001. Table IV summarizes the 

statistical test results. Statistical significance indicates that the paradigms produce meaningfully different anomaly score 

distributions, supporting the characterization of distinct behavioral patterns. 

TABLE IV 

STATISTICAL SIGNIFICANCE OF PARADIGM DIFFERENCES 

Paradigm Pair U-Statistic p-value 

Contrastive vs Isolation Forest 62,001 < 0.001 

Contrastive vs One-Class SVM 36,477 < 0.001 

Contrastive vs Autoencoder 58,889 < 0.001 

Contrastive vs Deep SVDD 62,001 < 0.001 

Contrastive vs LOF 56,598 < 0.001 
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V. DISCUSSION 

The goal of this evaluation is not to identify a single optimal anomaly detection method, but rather to characterize how 

different paradigms behave under varying attack scenarios and data conditions. This characterization provides practical 

guidance for deployment decisions that must consider specific operational requirements, computational constraints, and 

threat models rather than aggregate performance rankings. 

The empirical results reveal scenario-dependent performance patterns that vary substantially by paradigm and attack 

characteristics. The most prominent observation is the consistent strong performance of Deep Support Vector Data 

Description across both datasets, achieving F1 scores of 0.611 and 0.806 on synthetic and realistic attack scenarios 

respectively. This pattern suggests that the combination of deep representation learning with explicit hypersphere 

minimization provides an effective inductive bias for distinguishing normal operational patterns from anomalous 

deviations in power grid telemetry. However, this does not imply universal superiority, as operational constraints 

including computational requirements and interpretability needs may favor alternative paradigms in specific 

deployments. 

The substantial performance improvement observed across all paradigms when transitioning from synthetic perturbations 

to emulated realistic attacks merits careful consideration. F1 score improvements ranged from 0.18 to 0.34 across 

paradigms, with AUC-ROC values exceeding 0.90 on the realistic attack dataset. This pattern indicates that synthetic 

perturbations generated through simple transformations such as scaling, bias injection, and noise addition may not 

accurately represent the distinguishing characteristics of actual cyber attacks, which often exhibit more pronounced 

deviations from normal operational patterns. Practitioners should exercise caution when interpreting performance 

evaluated solely on synthetic perturbation data. 

The contrastive learning paradigm demonstrated distinct scenario-dependent behavior. While achieving F1 of 0.449 on 

synthetic perturbations, performance improved substantially to 0.786 on realistic attacks. This pattern suggests that 

contrastive representations may be more effective when attack patterns exhibit strong semantic differences from normal 

operation rather than subtle statistical deviations. The learned representations successfully captured the structure of 

normal operational patterns, as evidenced by clear clustering in the embedding space visualization, though effectiveness 

varied by attack characteristics. 

The ablation study results provide insight into the factors influencing contrastive learning behavior for time series 

anomaly detection. The minimal performance variation across augmentation strategies, with F1 scores varying by only 

0.006, suggests that the contrastive learning objective itself rather than specific augmentation choices drives 

representation quality for this task. This finding contrasts with computer vision applications where augmentation 

selection substantially impacts performance, indicating that temporal data may exhibit different sensitivity to 

augmentation design or that alternative augmentation strategies specifically designed for power grid data merit 

investigation. 

The practical implications of these findings vary by deployment context. For environments where computational 

resources are constrained and interpretability is valued, Isolation Forest offers reasonable detection capability with 

minimal training requirements and transparent decision processes. When detection accuracy is prioritized and 

computational resources are available, Deep Support Vector Data Description provides strong performance across 

evaluated scenarios. The contrastive learning paradigm offers competitive performance on realistic attacks with potential 

for transfer learning across related domains, though this capability was not evaluated in the present study. Rather than 

recommending a single approach, these findings support context-aware paradigm selection based on specific deployment 

requirements. 

These results align with observations from prior work while extending the empirical evidence base. Wang and colleagues 

reported high detection accuracies using supervised classifiers on labeled attack data, highlighting the performance gap 

between supervised and unsupervised approaches [17]. The present results demonstrating AUC-ROC values above 0.90 

for unsupervised paradigms on realistic attacks suggest this gap may be narrower than previously estimated for certain 

attack types. Stow and Stewart examined explainability methods for machine learning predictions, providing 

complementary techniques that could enhance the interpretability of anomaly detection results in practice [27]. 

Several limitations of the evaluation methodology should be acknowledged. The simulated PMU dataset was constructed 

based on documented testbed characteristics rather than obtained from the original source, potentially affecting the 

representativeness of attack patterns. The synthetic perturbation injection procedure employed established protocols but 

may not capture the sophistication of advanced persistent threats designed to evade detection. The window-based 
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evaluation aggregates temporal patterns, potentially masking fine-grained detection capabilities. The fixed window size 

of 60 time steps may not be optimal for all attack types. Future work should address these limitations through evaluation 

on additional datasets from operational environments and investigation of adaptive windowing approaches. 

VI. CONCLUSION 

This study presented a comprehensive empirical evaluation framework for characterizing unsupervised anomaly 

detection paradigms in smart grid cybersecurity contexts. The evaluation encompassed six paradigms across over 2.1 

million power consumption records representing both synthetic perturbations and emulated realistic attack scenarios, 

providing systematic benchmarks for understanding paradigm behavior under diverse conditions. 

The principal findings characterize scenario-dependent performance patterns rather than identifying a universally optimal 

approach. All evaluated paradigms achieved AUC-ROC values exceeding 0.90 on realistic attack scenarios, indicating 

that modern unsupervised anomaly detection approaches offer viable solutions for smart grid security applications. 

Performance varied substantially by paradigm and attack characteristics, with F1 scores ranging from 0.393 to 0.611 on 

synthetic perturbations and 0.637 to 0.806 on realistic attacks. The contrastive learning paradigm achieved F1 scores of 

0.449 and 0.786 on synthetic and realistic scenarios respectively, demonstrating distinct scenario-dependent behavior. 

The ablation study revealed that temporal augmentation strategies provide marginal performance variations for 

contrastive learning on power grid data, suggesting that the learning objective rather than augmentation design drives 

representation quality. The substantial performance improvement observed across all paradigms when transitioning from 

synthetic to realistic scenarios indicates that synthetic perturbation benchmarks may not fully capture real-world detection 

challenges. 

Based on these findings, several recommendations emerge for practical deployment and future research. First, paradigm 

selection should consider specific deployment constraints including computational requirements, interpretability needs, 

and expected attack characteristics rather than aggregate performance metrics. Second, evaluation protocols should 

incorporate both synthetic and realistic attack scenarios to provide comprehensive characterization of paradigm behavior. 

Third, future research should investigate domain-specific augmentation strategies and hybrid approaches that combine 

strengths of multiple paradigms for improved detection across diverse attack scenarios. 

A. Limitations 

Several limitations of this study should be acknowledged. The simulated PMU dataset was constructed based on 

documented characteristics rather than obtained from operational power systems, potentially affecting the 

representativeness of attack patterns. The synthetic perturbation injection procedure employed established protocols but 

may not capture the sophistication of advanced persistent threats. The evaluation focused on detection metrics without 

considering computational requirements, latency, or real-time deployment constraints that may influence paradigm 

suitability in operational environments. 

The window-based evaluation methodology aggregates temporal patterns, potentially masking fine-grained detection 

capabilities. The fixed window size of 60 time steps may not be optimal for all attack types, and adaptive windowing 

approaches were not explored. Additionally, the study evaluated paradigms in isolation without considering ensemble 

combinations that might improve overall performance. Future work should address these limitations through evaluation 

on datasets from operational environments and investigation of deployment-specific optimization strategies. 
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