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Abstract: The increasing digitization of power grid infrastructure has introduced cybersecurity vulnerabilities requiring
robust anomaly detection mechanisms. This study presents a large-scale empirical evaluation framework for
characterizing the behavior of six unsupervised anomaly detection paradigms under diverse smart grid attack scenarios.
The evaluation encompasses self-supervised contrastive learning with temporal convolutional encoders alongside
established methods including Isolation Forest, One-Class Support Vector Machine, Autoencoder, Deep Support Vector
Data Description, and Local Outlier Factor. Experiments were conducted across two complementary datasets comprising
over 2.1 million power consumption records representing both synthetic perturbations and realistic attack scenarios with
seven distinct threat types. Rather than identifying a universally optimal method, this study characterizes scenario-
dependent performance patterns and operational trade-offs. Results demonstrate that all evaluated paradigms achieve
Area Under the Receiver Operating Characteristic Curve values exceeding 0.90 on realistic attack scenarios, with F1
scores ranging from 0.637 to 0.806 depending on method and attack characteristics. The contrastive learning paradigm
achieved F1 scores of 0.449 and 0.786 on synthetic and realistic scenarios respectively. An ablation study examining
temporal augmentation strategies revealed marginal performance variations, suggesting that the learning objective rather
than augmentation design drives representation quality. These findings establish reproducible benchmarks, characterize
the strengths and limitations of each paradigm under different deployment conditions, and provide practical guidance for
selecting anomaly detection approaches based on specific operational requirements rather than aggregate performance
metrics.

Index Terms: Smart grid security, Anomaly detection, Unsupervised learning, Empirical evaluation, Cybersecurity
benchmarking, Critical infrastructure.

1. INTRODUCTION

Modern power grid infrastructure has undergone substantial transformation through the integration of digital
communication technologies, creating interconnected smart grid systems that enable bidirectional energy flow, real-time
monitoring, and automated demand response capabilities [1]. While these advancements deliver significant operational
benefits including improved efficiency, reduced costs, and enhanced reliability, they simultaneously introduce
cybersecurity vulnerabilities that threaten the stability of critical infrastructure serving millions of consumers [2]. The
convergence of operational technology with information technology networks has expanded the attack surface available
to malicious actors, making power systems increasingly susceptible to sophisticated cyber intrusions that can cause
widespread service disruptions, economic damage, and potential safety hazards [3].

The cybersecurity challenges facing smart grids are particularly acute due to the unique characteristics of power system
operations. Unlike conventional information technology environments where brief service interruptions may be tolerable,
power grid disruptions can cascade rapidly across interconnected systems, potentially affecting hospitals, transportation
networks, and other critical services [4]. Furthermore, the legacy components prevalent in existing grid infrastructure
were designed without cybersecurity considerations, creating integration challenges when deploying modern protection
mechanisms [5]. These factors necessitate the development of anomaly detection approaches specifically tailored to the
operational constraints and threat landscape of power grid environments.

Anomaly detection in smart grid systems presents distinct technical challenges that differentiate it from conventional

network intrusion detection. Power grid telemetry data exhibits complex temporal patterns reflecting load variations,
seasonal effects, and operational state transitions that must be distinguished from malicious manipulations [6]. False data
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injection attacks, where adversaries corrupt sensor measurements to mislead control systems, have emerged as
particularly concerning threats due to their potential to cause physical damage while evading traditional detection
mechanisms [7]. The development of detection methods capable of identifying such attacks without extensive labeled
training data remains an active research challenge.

Traditional supervised learning approaches to anomaly detection require substantial quantities of labeled attack data for
training, which is often unavailable in operational environments where attacks are rare and novel threat variants
continually emerge [8]. This limitation has motivated interest in unsupervised and self-supervised learning paradigms
that can learn normal operational patterns from unlabeled data and identify deviations indicative of potential attacks [9].
Multiple paradigms have emerged for this task, each embodying different assumptions about data structure and anomaly
characteristics. Understanding how these paradigms behave across different attack scenarios is essential for informed
deployment decisions.

Prior research on smart grid anomaly detection has explored diverse methodological approaches. Statistical methods
based on hypothesis testing and change point detection offer interpretable results but may struggle with the nonlinear
dynamics characteristic of modern power systems [10]. Machine learning approaches including Support Vector Machines
and ensemble methods have shown improved detection capabilities but often require careful feature engineering [11].
Deep learning methods, particularly autoencoders and recurrent neural networks, can automatically learn relevant
features but may require substantial computational resources and training data [12]. Despite this methodological diversity,
systematic empirical evaluations characterizing performance behavior across different attack scenarios and data
conditions remain limited.

A significant gap in existing literature concerns the characterization of detection paradigm behavior across diverse attack
scenarios. Many studies report aggregate performance metrics on single datasets, providing limited insight into how
methods behave under varying conditions [13]. The distinction between synthetic perturbations and realistic attack
scenarios has received insufficient attention, despite evidence that performance patterns can differ substantially across
these conditions [14]. Additionally, the factors influencing self-supervised contrastive learning effectiveness for time
series anomaly detection require systematic investigation.

This study addresses these gaps through a comprehensive empirical evaluation framework examining six anomaly
detection paradigms across diverse attack scenarios. The contributions of this work are as follows:

First, this study establishes a reproducible benchmarking framework for evaluating unsupervised anomaly detection
paradigms in smart grid security contexts. The framework encompasses standardized preprocessing, consistent evaluation
protocols, and multiple complementary metrics enabling systematic characterization of paradigm behavior.

Second, the evaluation characterizes scenario-dependent performance patterns across synthetic perturbations and realistic
attack scenarios. This characterization reveals how different paradigms exhibit distinct strengths and limitations
depending on attack characteristics, providing insights beyond aggregate performance rankings.

Third, an ablation study examining temporal augmentation strategies for contrastive learning offers insights into the
factors driving representation quality for time series anomaly detection, informing future methodological development.

Rather than identifying a single optimal method, this evaluation provides empirical evidence supporting context-aware
paradigm selection based on specific deployment requirements, attack characteristics, and operational constraints.

Il. RELATED WORKS

A. Smart Grid Security and Attack Detection

Research on smart grid cybersecurity has expanded substantially over the past decade, driven by increasing concerns
about infrastructure vulnerability and several high-profile incidents demonstrating real-world attack feasibility [15].
Liang, Weller, Zhao, Luo, and Dong provided a comprehensive survey of false data injection attacks, characterizing
threat models and reviewing detection approaches spanning statistical methods, machine learning, and game-theoretic
formulations [16]. Their analysis highlighted the challenge of detecting stealthy attacks designed to evade traditional bad
data detection mechanisms while remaining physically realizable within power system constraints.

Wang, Lu, Qin, Sun, and Zhang examined machine learning approaches for cyber attack detection in smart grids,
evaluating supervised classifiers including random forests, support vector machines, and neural networks on simulated
attack data [17]. While demonstrating promising detection accuracy, their evaluation relied exclusively on labeled attack
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data, limiting applicability to scenarios where such labels are unavailable. Ozay, Esnaola, Yarman Vural, Kulkarni, and
Poor extended this work by investigating sparse optimization techniques for detecting attacks targeting state estimation,
achieving robust detection under various attack magnitudes [18].

Recent work has increasingly focused on deep learning methods for power system anomaly detection. Sakhnini,
Karimipour, and Dehghantanha applied recurrent neural networks to detect intrusions in industrial control systems,
demonstrating improved performance on benchmark datasets [19]. However, their approach required supervised training
with labeled attack examples. He, Yan, Wen, Tian, and Cheng proposed a distributed intrusion detection framework using
federated learning to address data privacy concerns in multi-utility environments, though scalability limitations were
noted for large-scale deployments [20].

B. Unsupervised Anomaly Detection Paradigms

Unsupervised anomaly detection paradigms have received considerable attention due to their ability to identify anomalies
without labeled training data. Liu, Ting, and Zhou introduced Isolation Forest, an efficient ensemble method that isolates
anomalies through recursive random partitioning, demonstrating linear time complexity and strong performance across
diverse domains [21]. Scholkopf, Platt, Shawe-Taylor, Smola, and Williamson developed One-Class Support Vector
Machine, extending the support vector framework to learn a decision boundary enclosing normal data in high-
dimensional feature space [22]. These classical methods remain widely used due to their computational efficiency and
interpretability.

Deep learning approaches to unsupervised anomaly detection have emerged as powerful alternatives capable of learning
complex patterns from raw data. Ruff, VVandermeulen, Goernitz, Deecke, Siddiqui, Binder, Muller, and Kloft proposed
Deep Support Vector Data Description, combining deep representation learning with hypersphere minimization to jointly
learn features and anomaly scoring [23]. Autoencoder architectures trained to minimize reconstruction error have been
widely applied, with anomalies identified as samples exhibiting high reconstruction loss [24]. Stow and Stewart
investigated the stability of explainable machine learning methods including SHAP under data corruption conditions,
providing insights relevant to ensuring reliable anomaly detection in noisy environments [25].

Local Outlier Factor, introduced by Breunig, Kriegel, Ng, and Sander, detects anomalies by comparing local density
estimates around each sample to those of its neighbors, effectively identifying samples in low-density regions [26]. This
density-based approach offers advantages for detecting clustered anomalies but may exhibit different behavior with high-
dimensional data. Stow examined machine learning frameworks incorporating explainability mechanisms for transparent
decision making, demonstrating approaches relevant to interpreting anomaly detection results [27].

C. Contrastive Learning for Time Series

Contrastive learning has emerged as a powerful self-supervised paradigm for learning representations without labeled
data. Chen, Kornblith, Norouzi, and Hinton introduced SimCLR, demonstrating that simple augmentation strategies
combined with contrastive loss functions can learn effective representations on image classification tasks [28]. He, Fan,
Wu, Xie, and Girshick developed Momentum Contrast, introducing a memory bank mechanism to enable large batch
contrastive learning with limited computational resources [29].

Extension of contrastive learning to time series domains has proceeded more recently. Franceschi, Dieuleveut, and Jaggi
proposed a contrastive approach for time series representation learning, demonstrating improved classification
performance across multiple benchmark datasets [30]. Eldele, Ragab, Chen, Wu, Kwoh, Li, and Guan developed time
series specific augmentation strategies for contrastive learning, addressing the challenge that augmentations effective for
images may not transfer directly to temporal data [31]. Yue, Wang, Duan, Yang, Huang, Tong, and Xu introduced
TS2Vec, a hierarchical contrastive framework achieving strong results on time series forecasting and classification tasks
[32].

Despite these advances, systematic characterization of contrastive learning behavior for anomaly detection in critical
infrastructure domains remains limited. Stow investigated minimum demand period vulnerabilities through multi-scale
pattern analysis of power grid data, demonstrating the potential for advanced analytical methods in grid security
applications [33]. The present study addresses this gap by examining contrastive learning alongside established
paradigms specifically for smart grid anomaly detection.

D. Research Gap
While substantial progress has been made in both smart grid security and unsupervised learning, systematic empirical
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evaluations characterizing paradigm behavior across diverse scenarios remain limited. First, most studies report aggregate
metrics without examining how performance varies across attack types and data conditions. Second, the distinction
between synthetic perturbations and realistic attack scenarios requires investigation to understand deployment
implications. Third, factors influencing contrastive learning effectiveness for power grid data warrant systematic study.
This work addresses these gaps through a comprehensive evaluation framework providing scenario-dependent
characterization rather than aggregate rankings.

I11. METHODOLOGY
A. Problem Formulation

The anomaly detection problem addressed in this study is formulated as an unsupervised learning task where the objective
is to identify time windows containing abnormal patterns indicative of potential cyber attacks or system faults. Given a
multivariate time series X representing power grid measurements, the goal is to learn a function f: X — [0,1] that assigns
anomaly scores to each temporal window, where higher scores indicate greater likelihood of anomalous behavior. The
unsupervised formulation reflects practical deployment scenarios where labeled attack data is unavailable during model
training.

Formally, let X = {xi, X, ..., X,} denote a sequence of n measurement vectors, where each x; € R? represents d sensor
readings at time step 1. The preprocessing stage segments this sequence into non-overlapping windows of fixed length w,
producing a set of windows W = {Wi, W», ..., Wn,} where each W; € R"x. Each anomaly detection paradigm learns
representations of normal operating patterns from windows assumed to be predominantly attack-free, then identifies test
windows deviating significantly from learned normal patterns as potential anomalies.

B. Data Sources and Preprocessing

Two complementary datasets were employed to evaluate detection paradigms across different attack characteristics and
data properties. The first dataset comprises the UCI Individual Household Electric Power Consumption dataset,
containing over 2 million records of residential power measurements collected at one-minute resolution over
approximately four years. Seven features were extracted including global active power, global reactive power, voltage,
global intensity, and three sub-metering measurements. Synthetic perturbations were injected into this dataset following
established protocols to create controlled evaluation scenarios.

The second dataset was constructed to emulate characteristics documented in the Mississippi State University and Oak
Ridge National Laboratory power system testbed literature, incorporating measurements typical of Phasor Measurement
Unit telemetry including voltage magnitudes, current magnitudes, phase angles, active and reactive power flows, and
system frequency. This simulated dataset comprises 100,000 samples with 13 features. Seven attack types representing
realistic threat scenarios were implemented: short-circuit faults, open-circuit conditions, remote tripping command
injection, false data injection, replay attacks, scaling attacks, and random noise injection. It should be noted that this
dataset was simulated based on documented characteristics rather than obtained from the original testbed.

TABLE |
DATASET CHARACTERISTICS

Property UCI Power Simulated PMU
Total Samples 2,075,259 100,000
Features 7 13
Normal Samples 1,763,971 (85%) 85,000 (85%)
Attack Samples 311,288 (15%) 15,000 (15%)
Train Windows 47,038 2,265
Test Windows 34,587 1,666
Perturbation Types 5 Synthetic 7 Emulated

Preprocessing involved several stages to ensure data quality and consistency. Missing values were handled through
forward-fill interpolation followed by backward-fill for any remaining gaps. All features were normalized using standard
scaling to zero mean and unit variance, ensuring comparable magnitudes across different measurement types. The
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normalized data was segmented into windows of 60 time steps with non-overlapping stride for test evaluation and
overlapping stride of 30 steps for training data augmentation. Table | summarizes the key characteristics of both datasets.

Perturbation injection for the UCI dataset followed a clustered approach where perturbations were applied to contiguous
windows rather than scattered individual time points. This design ensures that window-level labels accurately reflect
perturbation presence and avoids the label noise that would result from scattered perturbations contaminating nearly all
windows. Five synthetic perturbation types were implemented: bias injection adding constant offsets, scaling
perturbations multiplying measurements by anomalous factors, ramp perturbations introducing gradual drifts, pulse
perturbations adding transient spikes, and random noise perturbations corrupting measurements with Gaussian noise.

C. Evaluation Framework

The evaluation framework employs self-supervised contrastive learning to learn representations of normal power grid
operational patterns, subsequently using these representations for anomaly detection through distance-based scoring. The
framework comprises four primary stages: data augmentation, temporal encoding, contrastive learning, and anomaly
detection. Fig. 1 illustrates the complete methodology framework.

Self-Supervised Contrastive Learning Framework for Smart Grid Anomaly Detection

g ™)
- - Temporal Conv
Smart Grid Preprocessing P NT-Xent Loss Anomaly Normal/
Encoder —
Time Series (Normalize) (256-dim) (Contrastive) Detector Anomaly
- )
H
&
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)
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(Jitter, Scale, Mask)
-
Datasets Baseline Comparisons Configuration

* UCI Power: 2.07M samples, 7 features Isolation Forest | One-Class SVM | Autoencoder Window: 60 | Batch: 256 | T: 0.5

* M5U/ORNL: 100K samples, 13 features Deep SVDD | Local Outlier Factor (LOF) Adam (Ir=1e-3) | Early Stop: 10

Fig. 1. Self-supervised contrastive learning framework for smart grid anomaly detection.

The data augmentation stage generates multiple views of each input window through temporal transformations designed
to preserve semantic content while introducing controlled variations. Three augmentation strategies were implemented:
jittering adds Gaussian noise with standard deviation of 0.1 to simulate measurement uncertainty, scaling multiplies
window values by random factors within 20% of unity to capture load variation patterns, and masking randomly zeroes
15% of time steps to encourage learning of robust temporal features. During training, two independently augmented
views are generated for each input window.

The temporal convolutional encoder architecture processes augmented windows through a series of one-dimensional
convolutional layers with batch normalization and rectified linear unit activations. The architecture comprises three
convolutional blocks, each containing a convolutional layer with increasing filter counts of 64, 128, and 256, followed
by batch normalization, activation, and max pooling operations that progressively reduce temporal resolution while
expanding representational capacity. Global average pooling aggregates the final convolutional output across the
temporal dimension, producing a fixed-dimensional representation regardless of input window length. A projection head
consisting of two fully connected layers with intermediate nonlinearity maps the encoder output to a 256-dimensional
embedding space where contrastive loss is computed.

The contrastive learning objective employs the Normalized Temperature-scaled Cross Entropy loss (NT-Xent) to
maximize agreement between embeddings of differently augmented views of the same window while minimizing
agreement between embeddings of different windows. For a batch of N windows, augmentation produces 2N
embeddings, and the loss is computed as:

Li,j = -log[exp(sim(zi, zj)/T) / Ziti exp(sim(zi, z)/T)] (1)
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where z; and z; are embeddings of two views of the same window, sim(-,-) denotes cosine similarity, and 7 is a temperature
parameter controlling the concentration of the distribution. The temperature was set to 0.5 based on preliminary
experiments. Training employed the Adam optimizer with learning rate of 0.001, batch size of 256, and cosine annealing
learning rate schedule over a maximum of 50 epochs with early stopping based on validation loss with patience of 10
epochs.

Anomaly detection in the trained framework proceeds by extracting embeddings from the encoder without the projection
head, as the encoder representations capture more general features suitable for downstream tasks. The Mahalanobis
distance from each test embedding to the centroid of normal training embeddings provides the anomaly score, accounting
for feature correlations in the embedding space. A threshold at the 95th percentile of scores from normal validation data
determines the binary classification boundary. Fig. 2 presents comprehensive dataset characteristics and experimental
configuration.

(a) Dataset Overview (b) Class Distribution
Property UCI Power MSU/ORNL
Total Samples 2,075,259 100,000
Features 7 13
Normal Samples 1,763,971 (85%) 85,000 (85%)
Attack Samples 311,288 (15%) 15,000 (15%)
Train Windows 47,038 2,265
Test Windows 34,587 1,666
Window Size 60 timesteps 60 timesteps
Attack Source Synthetic Real Scenarios
s Normal = Anomaly
(c) UCI Power Features (d) MSU/ORNL Features (e) MSU Attack Types
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Fig. 2. Dataset characteristics including feature distributions, attack type breakdowns, and experimental configuration.

D. Evaluated Paradigms

Six anomaly detection paradigms were evaluated, representing diverse algorithmic approaches and underlying
assumptions. Isolation Forest constructs an ensemble of random trees that isolate observations through recursive
partitioning, with anomalies requiring fewer partitions to isolate due to their distinctiveness. One-Class Support Vector
Machine learns a decision boundary in kernel-induced feature space enclosing the majority of training data, classifying
points outside this boundary as anomalies. Autoencoder neural networks trained to minimize reconstruction error identify
anomalies as samples with high reconstruction loss, indicating patterns not well represented in learned encodings. Deep
Support Vector Data Description combines deep feature learning with hypersphere minimization, jointly optimizing
network parameters and the hypersphere center to enclose normal data. Local Outlier Factor computes anomaly scores
based on local density deviation, comparing the density around each sample to densities of its neighbors. Contrastive
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Learning with temporal convolutional encoders learns representations through self-supervised objectives as described
above.

All paradigms were trained exclusively on normal data to ensure consistent evaluation conditions. Hyperparameters were
set based on established recommendations: Isolation Forest used 100 estimators with contamination parameter matching
the expected anomaly ratio, One-Class Support Vector Machine employed radial basis function kernel with automatic
gamma selection, Autoencoder architectures matched the encoder depth of the contrastive model, Deep Support Vector
Data Description used identical network architecture with hypersphere loss, and Local Outlier Factor used 20 neighbors
with novelty detection enabled.

E. Evaluation Metrics

Paradigm behavior was characterized using multiple complementary metrics to provide comprehensive assessment.
Precision measures the proportion of predicted anomalies that are true anomalies, reflecting the reliability of positive
predictions. Recall measures the proportion of true anomalies that are correctly identified, indicating detection sensitivity.
F1 score provides the harmonic mean of precision and recall, balancing these objectives. Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) quantifies discrimination ability across all possible threshold settings, with
values approaching 1.0 indicating strong separation between normal and anomalous distributions. Area Under the
Precision-Recall Curve (AUC-PR) provides additional insight particularly relevant for imbalanced datasets where the
positive class is rare. Statistical significance of performance differences was assessed using the Mann-Whitney U test
comparing anomaly score distributions.

IV. EMPIRICAL RESULTS AND ANALYSIS

A. Training Dynamics

Contrastive models were trained on normal operational data from each dataset, with training dynamics monitored through
loss trajectories. Fig. 3 presents the training and validation loss curves for both datasets. On the UCI dataset, training
proceeded for the full 50 epochs with gradual convergence, achieving final training and validation losses of 4.28 and 4.42
respectively. The modest gap between training and validation loss indicates appropriate model capacity without
substantial overfitting.

UCI Dataset MSU Dataset
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Training and validation loss curves for contrastive learning models on UCI and simulated PMU datasets.

The simulated PMU dataset exhibited faster initial convergence with early stopping triggered at epoch 20, reflecting the
smaller dataset size and corresponding reduced training time to convergence. Validation loss showed minor fluctuations
after epoch 15, attributable to the limited validation set size of 565 windows introducing variance in batch-level loss
estimates. The early stopping mechanism appropriately selected the model weights achieving minimum validation loss.

B. Performance Characterization Across Scenarios

Table Il presents the performance metrics for all six paradigms across both datasets. The results reveal scenario-dependent
patterns that vary by paradigm and attack characteristics rather than a single universally optimal approach.
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TABLE Il
PERFORMANCE METRICS ACROSS PARADIGMS AND SCENARIOS

Paradigm UCI F1 UCI AUC PMU F1 PMU AUC
Contrastive Learning 0.449 0.741 0.786 0.921
Isolation Forest 0.460 0.779 0.637 0.925
One-Class SVM 0.496 0.714 0.708 0.919
Autoencoder 0.543 0.792 0.769 0.908
Deep SVDD 0.611 0.866 0.806 0.944
Local Outlier Factor 0.393 0.791 0.668 0.946

On the UCI dataset with synthetic perturbations, F1 scores ranged from 0.393 (Local Outlier Factor) to 0.611 (Deep
SVDD), while AUC-ROC values ranged from 0.714 (One-Class SVM) to 0.866 (Deep SVDD). The contrastive learning
paradigm achieved F1 of 0.449 and AUC-ROC of 0.741 in this scenario.

Performance patterns exhibited notable differences on the simulated PMU dataset with emulated realistic attacks. All
paradigms achieved AUC-ROC values exceeding 0.90, indicating strong discrimination capability when attacks exhibit
characteristics more representative of real threats. F1 scores ranged from 0.637 (Isolation Forest) to 0.806 (Deep SVDD).
The contrastive learning paradigm achieved F1 of 0.786 and AUC-ROC of 0.921 on this dataset. Fig. 4 visualizes the
Receiver Operating Characteristic curves illustrating discrimination patterns across paradigms.
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Fig. 4. Receiver Operating Characteristic curves illustrating discrimination patterns across paradigms on synthetic and
realistic scenarios.

Fig. 5 illustrates the scenario-dependent performance variations across paradigms. All paradigms exhibited substantial
F1 score changes between datasets, with differences ranging from 0.18 to 0.34. This variation highlights the importance
of evaluating paradigms across multiple scenarios rather than relying on single-dataset metrics.
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Cross-Dataset Performance Comparison
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Fig. 5. Scenario-dependent F1 score patterns illustrating performance variations between synthetic and realistic attack
scenarios.

C. Representation Space Analysis

Visualization of learned representations provides insight into the structure captured by the contrastive encoder. Fig. 6
displays t-distributed Stochastic Neighbor Embedding (t-SNE) projections of test embeddings colored by anomaly labels.
On the UCI dataset, normal and anomalous samples exhibit partial overlap in the embedding space. The simulated PMU
dataset shows clearer structural separation, with anomalous samples forming distinct clusters at the periphery of the
normal data distribution.
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Fig. 6.

t-SNE visualization of contrastive encoder embeddings showing normal (blue) and anomalous (red) samples.

D. Ablation Study on Augmentation Strategies

The ablation study examined the contribution of different augmentation strategies to contrastive learning behavior. Table
111 presents results for models trained with no augmentation, individual augmentation types, and combined augmentations
on the simulated PMU dataset.
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TABLE Il
ABLATION STUDY ON AUGMENTATION STRATEGIES

Augmentation F1 Score AUC-ROC AUC-PR
None 0.869 0.998 0.993
Jitter 0.873 0.999 0.996

Scaling 0.867 0.997 0.990
Masking 0.871 0.997 0.994
Combined 0.873 0.999 0.996

Results indicate marginal variation across augmentation configurations. F1 scores ranged from 0.867 to 0.873, a
difference of 0.006. Jitter and combined augmentations achieved the highest F1 scores, though the practical significance
of this difference is limited given the narrow range. Fig. 7 visualizes these ablation results.

Ablation Study: Effect of Augmentation Strategy

1.0
B F1 Score
B AUC-ROC

0.8

0.6

Score

0.4

0.2

0.0-

None Jitter Scaling Masking Combined

Fig. 7. Ablation study results illustrating F1 score and AUC-ROC variations across augmentation strategies.

E. Statistical Analysis

Mann-Whitney U tests comparing anomaly score distributions confirmed statistically significant differences between the
contrastive learning paradigm and each baseline in all cases, with p-values below 0.001. Table IV summarizes the
statistical test results. Statistical significance indicates that the paradigms produce meaningfully different anomaly score
distributions, supporting the characterization of distinct behavioral patterns.

TABLE IV
STATISTICAL SIGNIFICANCE OF PARADIGM DIFFERENCES

Paradigm Pair \ U-Statistic p-value
Contrastive vs Isolation Forest 62,001 <0.001
Contrastive vs One-Class SVM 36,477 <0.001

Contrastive vs Autoencoder 58,889 <0.001
Contrastive vs Deep SVDD 62,001 <0.001
Contrastive vs LOF 56,598 <0.001
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V. DISCUSSION

The goal of this evaluation is not to identify a single optimal anomaly detection method, but rather to characterize how
different paradigms behave under varying attack scenarios and data conditions. This characterization provides practical
guidance for deployment decisions that must consider specific operational requirements, computational constraints, and
threat models rather than aggregate performance rankings.

The empirical results reveal scenario-dependent performance patterns that vary substantially by paradigm and attack
characteristics. The most prominent observation is the consistent strong performance of Deep Support Vector Data
Description across both datasets, achieving F1 scores of 0.611 and 0.806 on synthetic and realistic attack scenarios
respectively. This pattern suggests that the combination of deep representation learning with explicit hypersphere
minimization provides an effective inductive bias for distinguishing normal operational patterns from anomalous
deviations in power grid telemetry. However, this does not imply universal superiority, as operational constraints
including computational requirements and interpretability needs may favor alternative paradigms in specific
deployments.

The substantial performance improvement observed across all paradigms when transitioning from synthetic perturbations
to emulated realistic attacks merits careful consideration. F1 score improvements ranged from 0.18 to 0.34 across
paradigms, with AUC-ROC values exceeding 0.90 on the realistic attack dataset. This pattern indicates that synthetic
perturbations generated through simple transformations such as scaling, bias injection, and noise addition may not
accurately represent the distinguishing characteristics of actual cyber attacks, which often exhibit more pronounced
deviations from normal operational patterns. Practitioners should exercise caution when interpreting performance
evaluated solely on synthetic perturbation data.

The contrastive learning paradigm demonstrated distinct scenario-dependent behavior. While achieving F1 of 0.449 on
synthetic perturbations, performance improved substantially to 0.786 on realistic attacks. This pattern suggests that
contrastive representations may be more effective when attack patterns exhibit strong semantic differences from normal
operation rather than subtle statistical deviations. The learned representations successfully captured the structure of
normal operational patterns, as evidenced by clear clustering in the embedding space visualization, though effectiveness
varied by attack characteristics.

The ablation study results provide insight into the factors influencing contrastive learning behavior for time series
anomaly detection. The minimal performance variation across augmentation strategies, with F1 scores varying by only
0.006, suggests that the contrastive learning objective itself rather than specific augmentation choices drives
representation quality for this task. This finding contrasts with computer vision applications where augmentation
selection substantially impacts performance, indicating that temporal data may exhibit different sensitivity to
augmentation design or that alternative augmentation strategies specifically designed for power grid data merit
investigation.

The practical implications of these findings vary by deployment context. For environments where computational
resources are constrained and interpretability is valued, Isolation Forest offers reasonable detection capability with
minimal training requirements and transparent decision processes. When detection accuracy is prioritized and
computational resources are available, Deep Support Vector Data Description provides strong performance across
evaluated scenarios. The contrastive learning paradigm offers competitive performance on realistic attacks with potential
for transfer learning across related domains, though this capability was not evaluated in the present study. Rather than
recommending a single approach, these findings support context-aware paradigm selection based on specific deployment
requirements.

These results align with observations from prior work while extending the empirical evidence base. Wang and colleagues
reported high detection accuracies using supervised classifiers on labeled attack data, highlighting the performance gap
between supervised and unsupervised approaches [17]. The present results demonstrating AUC-ROC values above 0.90
for unsupervised paradigms on realistic attacks suggest this gap may be narrower than previously estimated for certain
attack types. Stow and Stewart examined explainability methods for machine learning predictions, providing
complementary techniques that could enhance the interpretability of anomaly detection results in practice [27].

Several limitations of the evaluation methodology should be acknowledged. The simulated PMU dataset was constructed
based on documented testbed characteristics rather than obtained from the original source, potentially affecting the
representativeness of attack patterns. The synthetic perturbation injection procedure employed established protocols but
may not capture the sophistication of advanced persistent threats designed to evade detection. The window-based
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evaluation aggregates temporal patterns, potentially masking fine-grained detection capabilities. The fixed window size
of 60 time steps may not be optimal for all attack types. Future work should address these limitations through evaluation
on additional datasets from operational environments and investigation of adaptive windowing approaches.

VI. CONCLUSION

This study presented a comprehensive empirical evaluation framework for characterizing unsupervised anomaly
detection paradigms in smart grid cybersecurity contexts. The evaluation encompassed six paradigms across over 2.1
million power consumption records representing both synthetic perturbations and emulated realistic attack scenarios,
providing systematic benchmarks for understanding paradigm behavior under diverse conditions.

The principal findings characterize scenario-dependent performance patterns rather than identifying a universally optimal
approach. All evaluated paradigms achieved AUC-ROC values exceeding 0.90 on realistic attack scenarios, indicating
that modern unsupervised anomaly detection approaches offer viable solutions for smart grid security applications.
Performance varied substantially by paradigm and attack characteristics, with F1 scores ranging from 0.393 to 0.611 on
synthetic perturbations and 0.637 to 0.806 on realistic attacks. The contrastive learning paradigm achieved F1 scores of
0.449 and 0.786 on synthetic and realistic scenarios respectively, demonstrating distinct scenario-dependent behavior.

The ablation study revealed that temporal augmentation strategies provide marginal performance variations for
contrastive learning on power grid data, suggesting that the learning objective rather than augmentation design drives
representation quality. The substantial performance improvement observed across all paradigms when transitioning from
synthetic to realistic scenarios indicates that synthetic perturbation benchmarks may not fully capture real-world detection
challenges.

Based on these findings, several recommendations emerge for practical deployment and future research. First, paradigm
selection should consider specific deployment constraints including computational requirements, interpretability needs,
and expected attack characteristics rather than aggregate performance metrics. Second, evaluation protocols should
incorporate both synthetic and realistic attack scenarios to provide comprehensive characterization of paradigm behavior.
Third, future research should investigate domain-specific augmentation strategies and hybrid approaches that combine
strengths of multiple paradigms for improved detection across diverse attack scenarios.

A. Limitations

Several limitations of this study should be acknowledged. The simulated PMU dataset was constructed based on
documented characteristics rather than obtained from operational power systems, potentially affecting the
representativeness of attack patterns. The synthetic perturbation injection procedure employed established protocols but
may not capture the sophistication of advanced persistent threats. The evaluation focused on detection metrics without
considering computational requirements, latency, or real-time deployment constraints that may influence paradigm
suitability in operational environments.

The window-based evaluation methodology aggregates temporal patterns, potentially masking fine-grained detection
capabilities. The fixed window size of 60 time steps may not be optimal for all attack types, and adaptive windowing
approaches were not explored. Additionally, the study evaluated paradigms in isolation without considering ensemble
combinations that might improve overall performance. Future work should address these limitations through evaluation
on datasets from operational environments and investigation of deployment-specific optimization strategies.
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