

AI Mock Interview Application

Chetan Shetty¹, Usha M²

Department of MCA, BIT, K.R. Road, V.V. Pura, Bangalore, India^{1,2}

Abstract: Preparing for job interviews effectively remains a critical challenge for job seekers, with many relying on traditional coaching methods that lack personalization, scalability, and real-time feedback mechanisms. Current interview preparation tools provide limited domain-specific guidance, lack interactive real-time evaluation, and fail to capture the nuanced assessment criteria that technical interviewers use. The absence of adaptive, AI-driven mock interview systems leaves candidates underprepared for behavioral, technical, and situational questions tailored to their target roles and experience levels.

To address these limitations, the AI-Powered Mock Interview Application integrates Generative AI, Large Language Models (LLMs), and Machine Learning to deliver personalized, interactive interview preparation at scale. The system leverages advanced NLP and transformer-based models to generate contextually relevant technical and behavioral questions based on job role, tech stack, and years of experience provided by users. Real-time speech-to-text conversion captures candidate responses, while AI-powered evaluation mechanisms assess communication clarity, technical accuracy, and confidence levels against industry benchmarks. The application provides instant, detailed feedback including answer quality assessment, improvement suggestions, performance analytics, and comparative metrics across multiple interview attempts.

Through a user-centric web platform, candidates access role-specific question banks, view personalized performance dashboards, and receive AI-generated recommendations for skill enhancement. Stakeholders including job seekers, career coaches, and educational institutions benefit from comprehensive analytics and interview metrics. By combining adaptive question generation with real-time speech analysis and predictive performance insights, the proposed solution significantly improves candidate confidence, reduces interview anxiety, and enhances job selection probability while democratizing access to high-quality interview preparation.

I. INTRODUCTION

Effective interview preparation is crucial for career success, yet job seekers lack access to personalized, adaptive coaching with real-time feedback. Traditional methods rely on generic mock interviews and static question banks that fail to address role-specific technical requirements and behavioral criteria, resulting in poor interview performance and reduced confidence.

The AI-Powered Mock Interview Application combines Generative AI, Large Language Models, and Machine Learning to deliver personalized interview preparation. Candidates input their target job role, technology stack, and experience level; the system generates relevant technical and behavioral questions. Advanced NLP and speech-to-text analysis assess responses in real-time, evaluating communication clarity, technical accuracy, and confidence. Instant feedback and actionable improvement suggestions help candidates identify performance gaps.

By integrating adaptive question generation with speech analysis and performance analytics, this application enhances candidate confidence and preparation effectiveness, while democratizing access to quality interview coaching for students, professionals, and institutions.

1.1 Project Description

Job interview preparation is a critical challenge due to its complexity and the involvement of numerous stakeholders including candidates, recruiters, and educational institutions. Problems like limited domain-specific guidance, absence of real-time feedback, and manual evaluation processes frequently result in candidate under-preparedness, reduced interview success rates, and economic losses in terms of missed opportunities. Conventional systems depend on generic question banks or simple digital tools, which do not provide adaptive learning, real-time assessment, or comprehensive performance visibility. This diminishes candidate confidence and hinders the early identification of skill gaps. Using advanced technologies such as Generative AI and Large Language Models for real-time analysis and predictive feedback, the AI-Powered Mock Interview Application tackles these gaps. The AI-Powered Mock Interview Application is a smart platform that allows for role-specific question generation, real-time response evaluation, and interview transcript tracking from candidate registration to job placement.

1.2 Motivation

Effective interview preparation and quality assurance are critical concerns in modern career development, where candidates pass through multiple stages such as technical assessments, behavioral evaluations, coding challenges, and HR rounds before reaching employment. Even minor lapses in handling conditions—such as inadequate domain knowledge, poor communication skills, lack of confidence, or unfamiliar question types—can lead to interview failure, missed opportunities, and prolonged job search periods. These issues not only result in significant economic losses but also pose serious risks to public health in terms of career progression and professional wellbeing.

Despite the importance of interview readiness, most existing interview preparation practices rely on manual coaching, periodic quality checks, and centralized question banks. Such approaches are often reactive, error-prone, and incapable of providing real-time visibility into candidate performance conditions. Moreover, the lack of transparent and trustworthy feedback mechanisms makes it difficult for candidates to verify their skill gaps, handling patterns, and readiness levels, leading to reduced candidate confidence.

The increasing demand for prepared, qualified, and interview-ready candidates highlights the need for an intelligent and automated preparation framework. Advances in Artificial Intelligence (AI) and Large Language Models (LLMs) enable early detection of skill gaps and prediction of interview performance degradation, while Natural Language Processing offers immutable and transparent assessment tracking across the interview journey. Motivated by these challenges, this project aims to develop an integrated AI-Powered Mock Interview Application that combines AI-based performance analysis with real-time speech-backed evaluation to ensure better candidate preparation, reduce interview failure rates, and enhance trust among all stakeholders.

II. RELATED WORK

Several studies have explored AI-based approaches for interview question generation and response evaluation using natural language processing and machine learning techniques. Transformer-based models such as BERT and GPT have demonstrated high accuracy in generating domain-specific technical questions, assessing answer quality, and identifying communication gaps in candidate responses. Other works utilize ML models such as SVM, Decision Trees, and LSTM to predict interview performance risks based on candidate profiles and historical attempt patterns. Speech-to-text and sentiment analysis techniques further enhance real-time feedback mechanisms by capturing communication clarity, confidence levels, and emotional intelligence indicators.

AI-powered interview assessment solutions focus on improving candidate preparation, personalized feedback, and performance tracking by maintaining detailed records of interview attempts and skill development. NLP-enabled speech analysis architectures further enhance assessment reliability by capturing real-time linguistic and behavioral parameters. However, most existing approaches address question generation or response evaluation independently. There remains a research gap in developing a unified system that integrates adaptive question generation, real-time speech analysis, predictive performance assessment, and comprehensive feedback mechanisms. The proposed AI-Powered Mock Interview Application addresses this gap by combining these technologies into a single cohesive framework that enables end-to-end intelligent interview preparation for diverse candidate profiles.

III. METHODOLOGY

A. System Architecture Overview

The AI-Powered Mock Interview Application is built as a full-stack web-based platform integrating frontend, backend, and AI/ML services. The system employs a modular architecture with distinct components for user management, question generation, response collection, real-time evaluation, and analytics. The backend API handles authentication, user profile management, interview session orchestration, and database operations. The frontend provides an intuitive interface for candidate registration, interview initiation, real-time question display, speech input capture, and performance visualization. The AI/ML pipeline operates independently, receiving requests for question generation and response evaluation through asynchronous microservices.

B. Candidate Profile and Interview Customization

Candidates register by providing essential profile information: target job role (e.g., Full Stack Developer, Data Scientist), technology stack (e.g., React, Node.js, Python), years of professional experience, and specific focus areas. This metadata

enables the system to generate highly relevant, role-specific interview questions. The system maintains a persistent user profile with complete interview history, including all past attempts, performance scores, feedback received, and skill progression metrics. This longitudinal data allows the system to adapt future questions based on demonstrated weaknesses and learning patterns, creating a truly personalized interview preparation experience.



Fig. 1. Flowchart of methodology

C. Generative AI-Based Question Generation Module

The question generation module leverages state-of-the-art Large Language Models (LLMs) such as GPT-3.5/GPT-4 or open-source alternatives like LLaMA. The module accepts candidate profile parameters and generates contextually relevant questions spanning multiple categories: technical depth questions (algorithm design, system architecture, coding problems), behavioral questions (conflict resolution, team collaboration, time management), and domain-specific questions aligned with the target job role and technology stack. Quality control mechanisms ensure generated questions are non-repetitive, appropriately challenging relative to candidate experience level, and aligned with actual industry interview patterns. The module maintains a database of generated questions to track diversity and prevent duplicate question delivery across sessions.

D. Real-Time Speech-to-Text and Response Capture

Candidates deliver responses verbally through the browser-based interface. The frontend utilizes Web Speech API and cloud-based speech recognition services (Google Cloud Speech-to-Text or OpenAI Whisper) to convert audio input into high-accuracy text transcripts in real-time. Timestamps are recorded for each response segment to track response duration and pacing. The system captures both the raw transcript and metadata including speech duration, pause patterns, and confidence scores from the speech recognition engine. Failed audio capture attempts trigger graceful error handling with user-friendly guidance for re-recording responses.

E. Implementation Flow

1. Initialize the system environment and authenticate users
2. Create a new candidate profile by capturing job role, technology stack, years of experience, and career objectives. At each interview session: Generate a unique session identifier and associate it with corresponding performance metrics for digital tracking.
3. Generate domain-specific interview questions using AI models and submit them to the LLM-based question generation module for relevance and quality assessment.
4. Collect storage and transportation parameters such as duration, temperature, and handling conditions for quality assessment
5. Apply Natural Language Processing and Machine Learning models to predict response quality, technical accuracy, and communication effectiveness based on historical candidate data.
6. Record all critical interview events, response transcripts, and evaluation outcomes in the database to ensure data integrity, immutability, and comprehensive performance tracking.
7. Update role-based dashboards with real-time interview session status, performance indicators, feedback messages, and predictive skill gap alerts.
8. Enable transcript-based access for candidates and coaches to verify response details, review AI-generated feedback, and track skill development history.
9. Log system performance metrics, candidate analytics, question generation statistics, and evaluation results for continuous system optimization and research purposes.

F. Hardware and Software Requirements

- Standard desktop or laptop system with a minimum of 8 GB RAM and a quad-core processor.
- Node.js runtime, Next.js 14 with React 18 for frontend and backend development, PostgreSQL (Neon) for data storage, Drizzle ORM for database management, Clerk SDK for authentication, RecordRTC and Web Audio API for audio handling, Google Gemini API for AI-based question generation and evaluation, and supporting UI libraries such as Tailwind CSS and Shadcn UI.

IV. SIMULATION AND EVALUATION FRAMEWORK

This section outlines the overall system design, evaluation workflow, and performance assessment approach adopted for the proposed AI Mock Interview Application. The framework integrates Artificial Intelligence (AI), speech processing, and web-based technologies to simulate real interview scenarios, evaluate candidate responses, and generate structured feedback. The system is implemented as a web-based platform, with Next.js and Node.js handling frontend and backend operations, enabling real-time interview interaction, automated response analysis, and secure user session management. The evaluation process focuses on assessing answer relevance, communication clarity, and overall interview performance using AI-driven analysis, ensuring consistent, objective, and scalable interview assessment for candidates.

A. System Architecture and Workflow

The proposed architecture is designed to support real-time interview simulation, automated response evaluation, and structured feedback delivery for candidates using the AI Mock Interview Application. The system ensures seamless interaction between users and AI components while maintaining consistency, scalability, and secure data handling. The major components of the system are described below:

Web-Based Interview Platform:

The application provides role-based access for candidates, recruiters, and administrators. It enables interview session creation, job role selection, real-time question delivery, audio response recording, and feedback visualization. The platform allows users to manage interview history and monitor performance progress through an interactive dashboard.

AI and Speech Processing Layer:

AI-driven language models generate role-specific interview questions and analyze candidate responses. Speech processing mechanisms convert recorded audio into text, enabling content evaluation, communication clarity analysis, and confidence assessment. This layer ensures objective and consistent evaluation across all interview sessions.

Authentication and Data Management Module:

Secure authentication services manage user identity, access control, and session validation. Interview data, transcripts, and evaluation results are stored securely to support session continuity, historical analysis, and performance tracking.

Analytics and Feedback Layer:

A centralized analytics module processes evaluation outputs to generate performance scores, strengths, improvement areas, and personalized recommendations. This supports real-time feedback display and post-interview performance assessment for users.

B. System Evaluation Setup

The evaluation framework is designed to measure the effectiveness of the AI Mock Interview Application under realistic interview practice scenarios. Multiple interview sessions are conducted to assess response analysis accuracy, feedback consistency, and system reliability.

Interview Configuration:

Interview sessions are created with different job roles, experience levels, and difficulty settings to simulate real-world interview conditions across diverse professional domains.

Response Collection Scenarios:

Audio responses are captured and processed during live interview sessions to evaluate speech-to-text accuracy, answer relevance, and AI-based feedback generation reliability.

C. Evaluation and Verification Process

Each interview session is uniquely associated with a digital session record that links candidate inputs, response transcripts, and AI evaluation results. As candidates progress through interview questions, responses are processed and stored securely. Upon completion, users can review detailed feedback reports that include ratings, answer analysis, and improvement suggestions. This process ensures transparent, repeatable, and trustworthy evaluation for both candidates and recruiters.

D. Results and Observations**Interview Evaluation Performance:**

- AI-generated questions were relevant and aligned with selected job roles and experience levels.
- Automated response analysis effectively evaluated answer quality and communication clarity.

System Reliability and Consistency:

- Interview sessions were processed without data loss or evaluation inconsistencies.
- Feedback reports were generated and delivered instantly after session completion.

User Impact:

- Candidates received structured and actionable feedback to improve interview readiness.
- Recruiters benefited from standardized evaluation criteria and consistent performance metrics.

Tell us about the job
Provide details about the job position, your tech stack, and experience level so our AI can tailor the interview questions.

Job Role / Position
Ex. Full Stack Developer

Job Description / Tech Stack
Ex. React, Node.js, PostgreSQL, System Design...

Years of Experience
Ex. 5 (Enter 0 for fresher)

Cancel **Start Interview**

Fig.2. Add Details Page

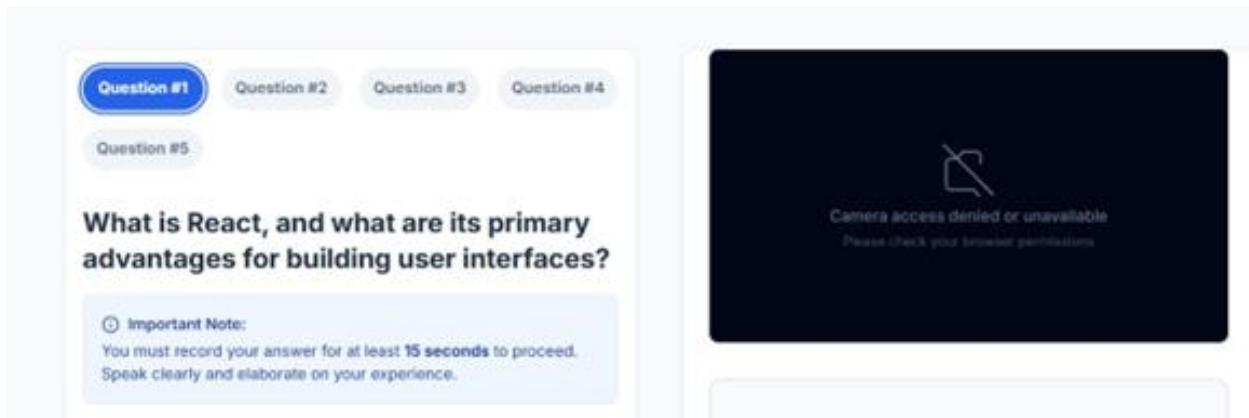


Fig.3. Interviewing Page

- The Interviewing Page displays the mock interview interface with question navigation and recording setup.
- Users see the current question (e.g., "What is React, and what are its primary advantages for building user interfaces?") with question numbering (Question #1, #2, #3, #4, #5) at the top for tracking progress.

Fig. 4. Feedback Page

V. RESULTS AND DISCUSSION

The experimental evaluation of the proposed AI Mock Interview Application demonstrates its effectiveness in enhancing interview practice through automated question generation, response evaluation, and structured feedback delivery. Multiple interview sessions were conducted across different job roles and experience levels to assess system performance under realistic interview preparation scenarios.

The results show that the AI-based question generation module consistently produced relevant and role-specific interview questions aligned with selected job profiles. This enabled candidates to experience realistic interview simulations comparable to professional interview environments. Compared to static question banks, the automated approach provided greater flexibility and contextual accuracy.

The speech processing and response analysis mechanisms effectively evaluated candidate answers by converting spoken responses into text and analyzing them for content relevance, clarity, and completeness. Real-time processing ensured immediate evaluation, allowing users to receive feedback without delay. This automated evaluation approach reduced subjectivity and ensured consistent assessment across multiple interview sessions.

Furthermore, the AI-driven feedback generation module successfully delivered structured performance reports containing ratings, strengths, and improvement areas. Candidates were able to review detailed feedback after each session, supporting continuous improvement and targeted skill development. The system maintained reliable storage of interview data, transcripts, and evaluation results, enabling progress tracking across multiple attempts.

Overall, the integrated platform demonstrated improved interview readiness support, consistent evaluation accuracy, and minimal operational complexity. The results confirm that the AI Mock Interview Application provides an efficient, scalable, and user-friendly solution for modern interview preparation while maintaining reliability and transparency throughout the evaluation process.

VI. CONCLUSION

This project demonstrates the feasibility and effectiveness of applying Artificial Intelligence and modern web technologies to enhance interview preparation and performance evaluation. The proposed AI Mock Interview Application successfully simulates real-world interview scenarios and provides an intelligent, automated platform for assessing candidate responses in a structured and consistent manner.

The integration of AI-based question generation and response analysis enables realistic interview practice tailored to specific job roles and experience levels. Speech processing and automated evaluation mechanisms transform traditional, subjective interview preparation into an objective and data-driven assessment process. These capabilities allow candidates to receive immediate, actionable feedback, supporting continuous learning and skill improvement.

Additionally, the system ensures secure user authentication, reliable storage of interview data, and transparent feedback delivery across sessions. By maintaining detailed performance records and evaluation history, the platform supports progress tracking and repeatable assessment without manual intervention.

VII. FUTURE WORK

While the proposed AI Mock Interview Application effectively demonstrates the use of artificial intelligence and modern web technologies for automated interview preparation and evaluation, several enhancements can be considered to extend its capabilities and real-world applicability. Future development may focus on incorporating advanced speech and video analysis techniques to evaluate additional communication factors such as facial expressions, eye contact, and body language during interview sessions.

Another significant enhancement involves expanding the AI evaluation models to support a broader range of job roles, domains, and industry-specific interview formats. Integrating more advanced natural language processing and deep learning techniques can further improve answer understanding, contextual reasoning, and feedback accuracy. The adoption of cloud-based processing and scalable deployment strategies can also enhance system performance by supporting a larger number of concurrent interview sessions with reduced latency.

Additionally, future versions of the system may explore integration with recruitment platforms, learning management systems, and organizational hiring workflows to enable seamless candidate assessment and progress tracking. These extensions would support large-scale adoption of intelligent interview preparation tools while improving accessibility, personalization, and decision-making in professional recruitment and career development environments.

REFERENCES

- [1]. L. J. Easdown et al., "The Behavioral Interview: A Method to Assess ACGME Competencies," PMC NCBI, 2004.
- [2]. S. D. Popescu and B. Kerr, "AI in Education: Redefining Language Assessment and Feedback Mechanisms," IEEE Publications, 2024.
- [3]. AJIS Research Collective, "Automated Essay Scoring and Feedback Systems for ESL Learners: A Meta-Review of Pedagogical Impact," Asian Journal of International Studies, 2024.

- [4]. IEEE Research Consortium, "A Survey of AI-Driven Mock Interviews Using Generative AI and Machine Learning (InterviewX)," IEEE Xplore Digital Library, 2024.
- [5]. P. Srihari, S. Suravarapu, and T. L. Nimmalapudi, "Survey on Interview Performance Prediction and Analysis Using Audio Features and NLP," Neuro Quantology Journal, 2022.
- [6]. Google Research, "Gemini API Documentation," 2024. [Online]. Available: <https://ai.google.dev>
- [7]. Vercel, "Next.js 14 Documentation," 2024. [Online]. Available: <https://nextjs.org/docs>
- [8]. Clerk Inc., "Clerk Authentication and User Management Documentation," 2024. [Online]. Available: <https://clerk.com/docs>
- [9]. Mozilla Developer Network (MDN), "Web Audio API Documentation," 2023. [Online]. Available: <https://developer.mozilla.org>
- [10]. RecordRTC Team, "RecordRTC: WebRTC Audio and Video Recording Library," 2023. [Online]. Available: <https://recordrtc.org>