

Design and Implementation of an AI-Powered Career Intelligence Platform for Adaptive Employability Enhancement

Jagadevi N Puranikmath¹, Nagaraj Loni², Mohammed Kaifuddin³, R Raghavendra⁴

Assistant Professor at Ballari Institute of Technology and Management Ballari, Visvesvaraya Technological University (VTU), India¹

Student at Ballari Institute of Technology and Management Ballari, Visvesvaraya Technological University (VTU), India²⁻⁴

Abstract: This paper presents the design and implementation of an AI-Powered Career Intelligence Platform aimed at enhancing employability through intelligent interviewing, adaptive coding practice, automated resume optimization, and collaborative learning. The proposed system integrates Artificial Intelligence (AI), Natural Language Processing (NLP), and Machine Learning (ML) techniques to deliver personalized, data-driven assistance for students and professionals seeking to improve career readiness. The platform is structured into four core modules. The first module, the AI-Based Interview System, automatically generates role-specific questions, records user responses through speech, converts them to text using multilingual speech recognition, and provides real-time, performance-based feedback using sentiment and semantic analysis. The second module, the Adaptive DSA Learning Engine, delivers context-aware coding exercises with dynamic difficulty adjustment, interactive hints, and AI-assisted code evaluation for personalized skill development. The third module, the ATS-Driven Resume Builder, optimizes resumes using real-time scoring, tone adjustment, and keyword enrichment aligned with Applicant Tracking System (ATS) standards. The fourth module, the AI-Enhanced Community Platform, employs knowledge graphs, peer endorsements, and automated discussion summarization to foster collaborative learning and professional networking. With multilingual support for Kannada, Hindi, and English, the system ensures inclusivity across diverse user groups. By combining adaptive analytics with NLP-driven insights, the platform establishes a unified, scalable, and intelligent ecosystem that bridges education, career preparation, and continuous employability enhancement.

Keywords: Artificial Intelligence (AI), Natural Language Processing (NLP), Machine Learning (ML), Adaptive Learning, Employability Enhancement, Resume Optimization, Knowledge Graphs.

I. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML) are increasingly reshaping how individuals prepare for professional interviews, acquire technical skills, and build employable profiles. In recent years, AI-driven systems have shown significant potential in automating personalized learning, career guidance, and recruitment processes. However, existing online platforms for interview preparation [1], coding challenges [6], resume creation [2], and peer learning largely function in isolation [11]. These fragmented systems lack integration, personalization, and multilingual accessibility—factors that are crucial for improving learning outcomes and real-world employability.

To address these challenges, this paper introduces an AI-Powered Career Intelligence Platform that unifies four intelligent modules: AI-Based Interview and Feedback, Adaptive DSA Learning, AI-Driven Resume Optimization, and an AI-Enhanced Learning Community. The interview module employs NLP and speech recognition to generate role-specific questions, capture voice responses, and provide real-time performance feedback [10]. The adaptive DSA module delivers interactive coding exercises with dynamic difficulty adjustment and AI-assisted hints. The resume builder utilizes NLP-based Applicant Tracking System (ATS) analysis, tone detection, and keyword optimization to enhance employability scores[3],[4]. The community platform integrates knowledge graphs and AI-moderated collaboration to promote peer learning and professional networking[11]. Supporting multiple languages, including Kannada, Hindi and English the platform ensures inclusivity and accessibility for diverse users. By combining NLP, speech recognition, adaptive analytics, the proposed system provides a unified, scalable and intelligent framework that bridges the gap between education and employability.

II. LITERATURE SURVEY

AI-Based Interview Systems: [1] AI-driven interview systems have transformed candidate evaluation by simulating real interview environments and providing automated, data-driven feedback. Using MLP and speech-to-text technologies, these systems analyze tone, sentiment, and context to assess communication and technical accuracy. Models like BERT as Gemini have strong performance in generating relevant feedback, addressing limitation of traditional static interview preparation platforms.

Adaptive Learning and skill Assessment: [2] Adaptive learning models use reinforcement learning and performance analytics to personalize content difficulty based on user skill levels. Unlike static platforms such as LeetCode, adaptive systems dynamically adjust question complexity and provide intelligent hints, enhancing engagement and retention. This approach continuous skill improvement and individualized learning experience in coding education.

AI-Driven Resume Optimization: [3] NLP based resume systems enhance employability by analysing structure, tone and keywords relevance to optimize ATS compatibility. Earlier studies, like Reddy et al. Focused on template generation, whereas modern systems provide real time scoring and keyword recommendations. Integrating AI-based tone and semantic analysis ensures higher job relevance and professional presentation.

AI in Collaboration Learning: [4] AI-enhanced communities leverage knowledge graphs and clustering algorithms to connect users with similar skill sets and interest. These systems facilitate intelligent discussion, peer endorsements, and content recommendations. However, most lack personalization and language inclusivity, which the proposed model addresses through multilingual NLP and AI-driven collaboration tools.

Multilingual NLP and Inclusivity: [5] Advances in multilingual models such as BERT and XLM-R have enabled accurate text and speech understanding in languages like Hindi and Kannada. Incorporating multilingual NLP increases accessibility, engagement, and inclusivity, ensuring broader reach AI-based educational and career development systems.

AI in Knowledge Graph-Based Community Platforms :[6] AI-driven community platforms use knowledge graph and clustering to link learners, skills and materials, enabling smart peer recommendations, mentorship, and collaboration. While improving engagement and content relevance, current systems often lack robust moderation. The proposed approach adds reputation-aware weighting and AI quality assessment to ensure credible and inclusive knowledge sharing.

AI in interview simulation and feedback: [7] AI-driven interview simulation combines NLP, semantic analysis, and speech recognition to create realistic virtual interviews. They provide automated feedback on content relevance, communication clarity, and emotional tone. While prior systems often struggle with accent bias and limited contextual understating, the proposed model integrates multilingual speech-to-text and transformer-based NLP to generate fair, context-aware, and scalable interview evaluations.

Adaptive learning & DSA difficulty modelling: [8] Adaptive DSA systems use regression and reinforcement learning to adjust problem difficulty based on user performance, accelerating skill acquisition and reducing solution times. Developing interpretable difficulty signals, using multi-armed bandit strategies for optimal question selection, and researching long-term retention to connect short-term gains to sustained learning are all examples of future work.

AI-Driven Personalized Learning for Career Readiness: [9]AI and machine learning can make learning more personalized by improving engagement, adaptability, and skill development. Using adaptive feedback and performance tracking helps tailor content to each learner, supporting the platform's DSA module for continuous improvement.

AI-Supported Career Development and Employability Enhancement: [10]AI-based training improves career readiness and professional skills. Integrating AI with learning, interviews, and resume optimization helps learners become better prepared for real-world jobs.

III. PROPOSED METHODOLOGY

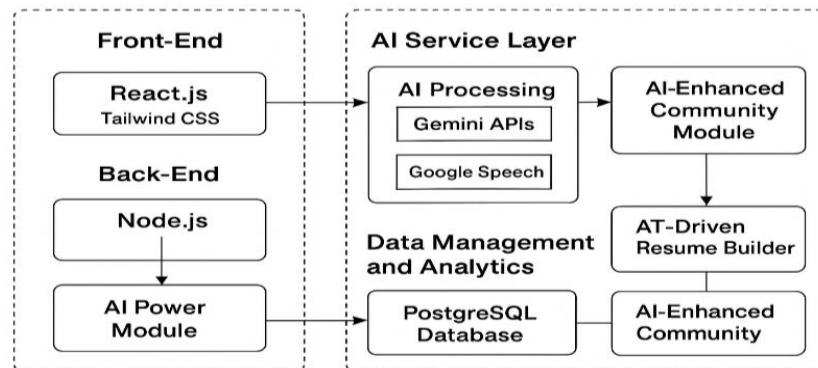
The proposed AI-Powered Career Intelligence Platform integrates advanced Artificial Intelligence (AI), Natural Language Processing (NLP), and adaptive learning algorithms to provide a multilingual, data- driven, and personalized employability enhancement framework. The system architecture comprises four major modules AI interview and feedback, adaptive DSA learning, ATS-based resume builder and AI-enhances community platform all interconnected

through a centralized AI analytics engine and user data layer. The integration ensures unified personalization, scalability and continuous user performance improvement [1], [2], and [10].

A. AI Interview and Feedback Module: The AI interview and feedback module NLP and speech-to-text technologies such as the Gemini API to process user responses. Recorded voice inputs are converted into text and analysed using sentiment detection and semantic similarity models to access communication clarity, emotional tone, and technical depth. Based on the analysis, the system provides real-time feedback to help users enhance their articulation, confidence and subject knowledge. Additionally, AI-based question generation dynamically adapts to user proficiency, ensuring progressively challenging and contextually relevant interview simulations[10][17].

B. Adaptive DSA Learning Module: The adaptive DSA learning module employs performance-driven adaptive learning algorithms to tailor problem difficulty levels based on user accuracy, coding style, and completion time. The module integrates AI-assisted code evaluation models that analyze code readability, correctness and computational efficiency. These assessments are used to generate personalized learning paths that promote incremental skill enhancement and mastery of data structures and algorithms. The system creates an intelligent, feedback-oriented coding environment by continuously monitoring user progress and offering targeted hints [6].

C. ATS-Based Resume Builder Module: The ATS-based resume builder integrates NLP-driven keyword extraction, tone analysis, and applicant tracking system scoring to optimize resumes for alignment with job descriptions. The module analyses use resumes against domain-specific datasets to recommend improvements in structure, tone, and keyword density. By incorporating semantic similarity measures and real-time feedback mechanisms, the system ensures higher compatibility with recruiter expectations and automates screening tools [2],[4].


D. AI-Enhanced Community Platform: The AI-enhanced community platform fosters collaboration and mentorship through knowledge graph modeling and graph-based clustering algorithms. The system identifies relationships between learners based on skill sets, learning progress, and interests, thereby recommending relevant peers, mentors, and discussion groups. AI-driven summarization tools further extract key insights from community discussions, enabling concise and efficient knowledge sharing. Multilingual NLP models ensure inclusivity across Kannada, Hindi and English, enhancing accessibility for a broader audience [11].

E. Centralized AI Analytics and Integration: All modules are interconnected through a centralized AI analytics engine that continuously aggregates performance data and learning metrics. The analytics layer supports data visualization, personalized recommendations, and skill-growth tracking through an interactive dashboard. This unified architecture forms a cohesive career intelligence ecosystem, capable of continuous adaptation and large-scale personalization [9].

All modules are integrated through a centralized AI dashboard that visualizes user progress, skill evolution, and personalized recommendations, forming a unified and intelligent career intelligence ecosystem.

IV. IMPLEMENTATION

The implementation of the proposed AI-powered career intelligence platform integrates front-end, back-end, and artificial intelligence service layers to achieve seamless user interaction and intelligent automation. The system adopts a modular microservice architecture to ensure scalability, interoperability, and efficient integration of the new functionalities.

A. System Architecture: The system architecture follows a layered approach, where independent modules interact through secure APIs. The micro service based facilitates distributed deployment, efficient load balancing and high system availability. Each service can be independently updated or scaled based on usage and computational requirements.

B. Frontend layer: The frontend is developed using ReactJS in combination with Tailwind CSS, providing a responsive and user-friendly interface. The interface supports multilingual accessibility and adaptive rendering, ensuring usability across desktops and mobile devices. The design focuses on delivering an intuitive and intuitive user experience for learners, job seekers, and professionals.

C. Backend layer: The backend is implemented using NodeJS, which manages user authentication, request routing and API communication. It acts as a middleware between the user interface, database and AI models, ensuring secure data flow. The backend also handles session management, user authorization, and asynchronous task processing for efficient service execution.

D. AI Service layer: The AI processing layer integrates pretrained NLP models using Gemini API to perform question generation, response evaluation, and personalized feedback. Google Speech Recognition APIs are utilized to convert voice responses into text with high accuracy. The adaptive DSA learning module incorporates Python based evaluation scripts to assess code quality, monitor user performance, and adjust difficulty levels dynamically.

E. data management and Analytics: A centralized PostgreSQL database stores structures data, including user profile, resumes, coding performance, and interview history. AI analytics outputs are visualized using an interactive dashboard, providing insights into user progress, skill evolution, and performance metrics. Data synchronization across modules ensures consistency and real time updates.

F. Intelligent Modules: The ATS driven resume applies NLP-based keyword extraction, ATS scoring, and tone analysis to align resumes with job descriptions. The AI-Enhanced Community Module employs graph-based clustering algorithms to connect learners with mentors or peers based on skill similarity and activity patterns. These intelligent modules collectively enhance employability through adaptive learning and networking. The complete system provides multilingual accessibility in Kannada, Hindi, and English, ensuring inclusivity for diverse user groups. The modular implementation enables efficient resource utilization and forms a foundation for scalable AI-driven employability enhancement.

V. TRAINING THE MODEL

The AI components of the proposed Career Intelligence Platform were systematically trained and fine-tuned to handle diverse employability-related tasks such as question generation, response evaluation, resume optimization, and community recommendation. Each model was optimized for contextual accuracy, linguistic diversity, and computational efficiency.

A. Interview Question Generation: The Interview Question Generation Module utilizes transformer-based architectures, including BERT and Gemini, trained on domain-specific corpora covering software engineering, data structures, algorithms, and human resource interviews. Fine-tuning was performed using supervised learning to ensure semantic relevance and adaptive difficulty levels. The model's output quality was validated through expert evaluation and BLEU-score comparison with reference datasets.

B. Speech-to-Text Processing: The platform integrates the Google Speech Recognition API, trained on multilingual datasets to enable accurate transcription in Kannada, Hindi, and English. Acoustic and linguistic adaptation techniques were employed to enhance recognition accuracy across diverse accents and environments.

C. Feedback Generation: The Feedback Generation Model employs Natural Language Processing (NLP) pipelines for sentiment and semantic analysis, trained using expert-annotated interview transcripts. The model interprets tone, emotion, and content quality to produce structured feedback for communication and technical improvement.

D. Adaptive DSA Learning Model: In the Data Structures and Algorithms (DSA) module, adaptive difficulty prediction is achieved through regression analysis and reinforcement learning. The model learns from user performance metrics—such as accuracy, response time, and code efficiency—to adjust question complexity dynamically.

E. Resume Optimization Model: The ATS-Driven Resume Optimization Model was trained on a large collection of anonymized resumes and job descriptions to emulate Applicant Tracking System (ATS) behavior. To suggest specific resume enhancements, the model uses format compliance assessment, semantic similarity analysis, and keyword relevance scoring.

Together, these models serve as the basis for an adaptive, data-driven, multilingual framework for improving employability that can continuously improve itself through user feedback and retraining.

VI. EVALUATION AND PREDICTION

The suggested AI-Powered Career Intelligence Platform's performance was assessed in a number of areas, including user satisfaction, scalability, adaptability, and model accuracy. To verify the robustness and dependability of the system, each module was evaluated using statistical metrics, real-world feedback, and standard benchmarks.

A. Evaluation of the Interview Module: The contextual relevance, coherence, and fluency of AI-generated feedback were assessed using the BLEU (Bilingual Evaluation Understudy) and ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metrics. Strong alignment between AI-generated responses and expert evaluations was demonstrated by the system's high BLEU and ROUGE scores. The speech-to-text subsystem achieved an average transcription accuracy of more than 90% when tested on multilingual datasets in English, Hindi, and Kannada. F1-scores were used to validate sentiment and tone analysis, demonstrating accurate emotion detection and contextual comprehension.

B. Evaluation of the Adaptive DSA Module: The Adaptive DSA Learning Module was analyzed using the Mean Absolute Error (MAE) metric between predicted and actual difficulty levels. Results demonstrated that the model effectively adjusts question complexity according to user performance. Evaluation of learning progression and response time confirmed the model's ability to maintain a balance between challenge and learning efficiency.

C. Evaluation of the Resume Optimization Model: The ATS-Driven Resume Builder was assessed by comparing AI-generated ATS scores with recruiter evaluations of corresponding resumes. The system exhibited a strong positive correlation with real-world recruitment outcomes, validating the accuracy of its keyword optimization and tone adjustment algorithms. The feedback mechanism improved user resumes iteratively through measurable keyword alignment and semantic optimization.

D. Evaluation of the Community Module: To gauge the accuracy of peer recommendations, the AI-Enhanced Community Platform was assessed using precision and recall metrics. Peer connectivity was found to be highly relevant when user engagement levels, discussion participation, and mentor-mentee matches were examined. By recognizing common skill patterns and interaction histories, graph-based clustering increased the accuracy of recommendations.

E. Predictive Analytics and User progress forecasting: Reinforcement learning and regression-based forecasting were used in predictive analytics models to estimate user progress, spot skill gaps, and forecast employability trends. Real-time visualization dashboards show interview readiness scores, coding accuracy, and user improvement trajectories. The system's overall strong predictive accuracy, flexibility, and scalability validate its efficacy as an AI-driven career advancement solution. Long-term learning outcomes and inclusivity are further improved by the platform's adaptive feedback mechanisms and multilingual capability.

VII. VISUALIZING PERFORMANCE

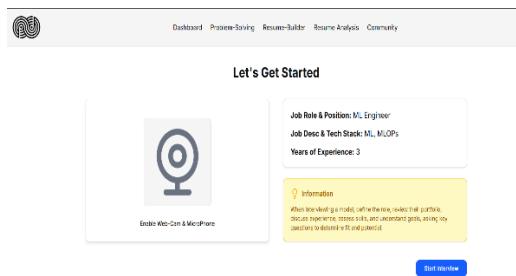


Fig-1 : Mock Interview dashboard

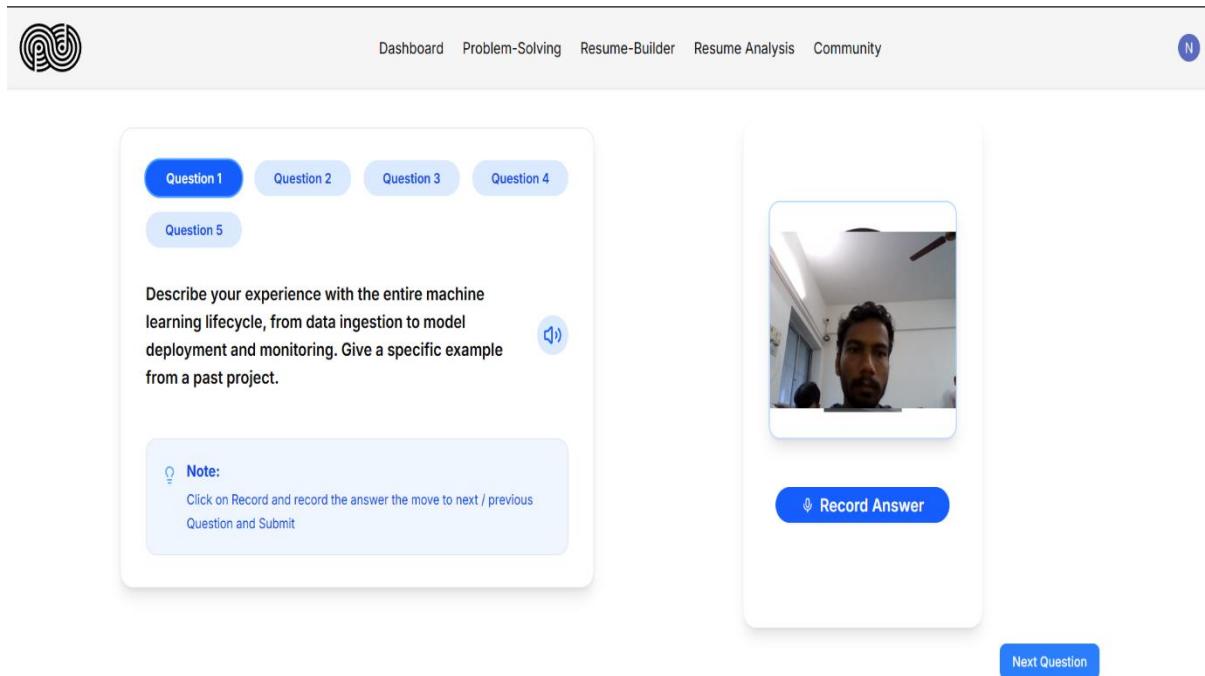


Fig-2 : Mock Interview with AI and Record the answer

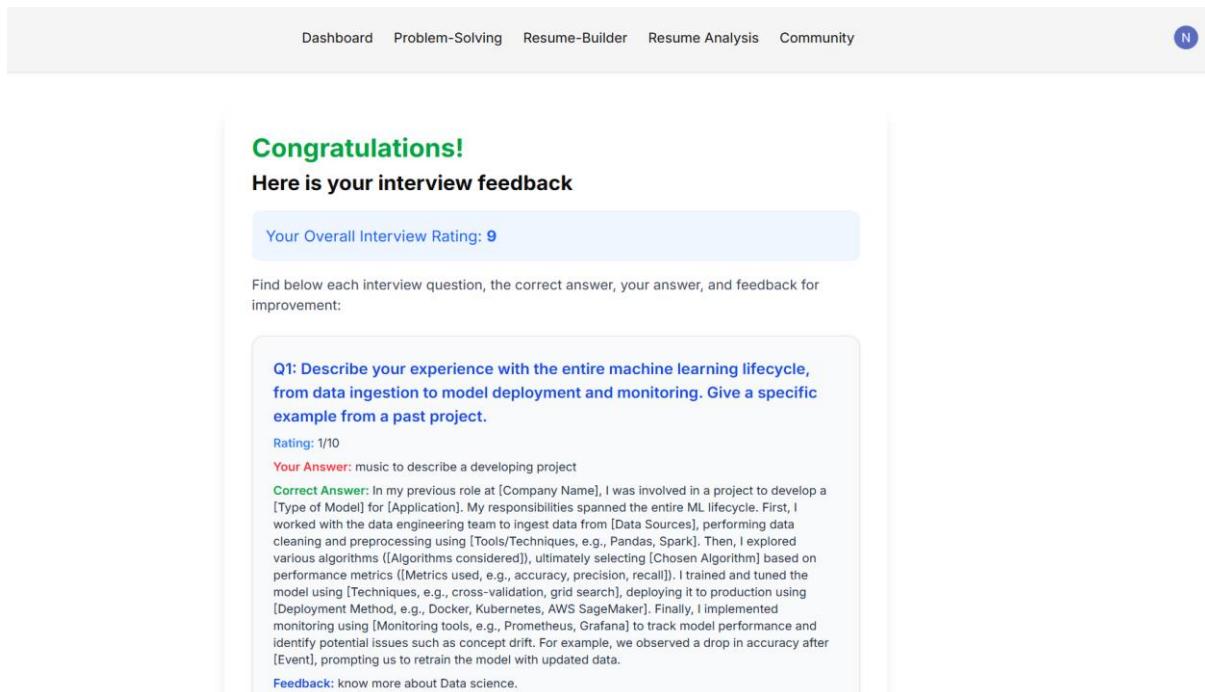


Fig-3: Get the Feedback from AI

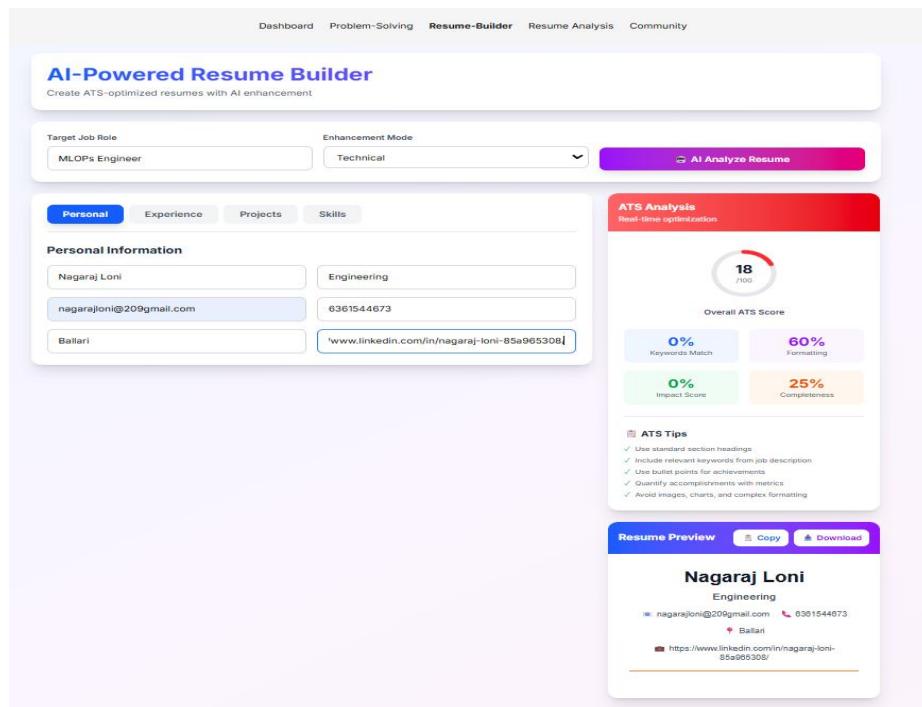


Figure 4: Live ATS with Integrated Resume Builder

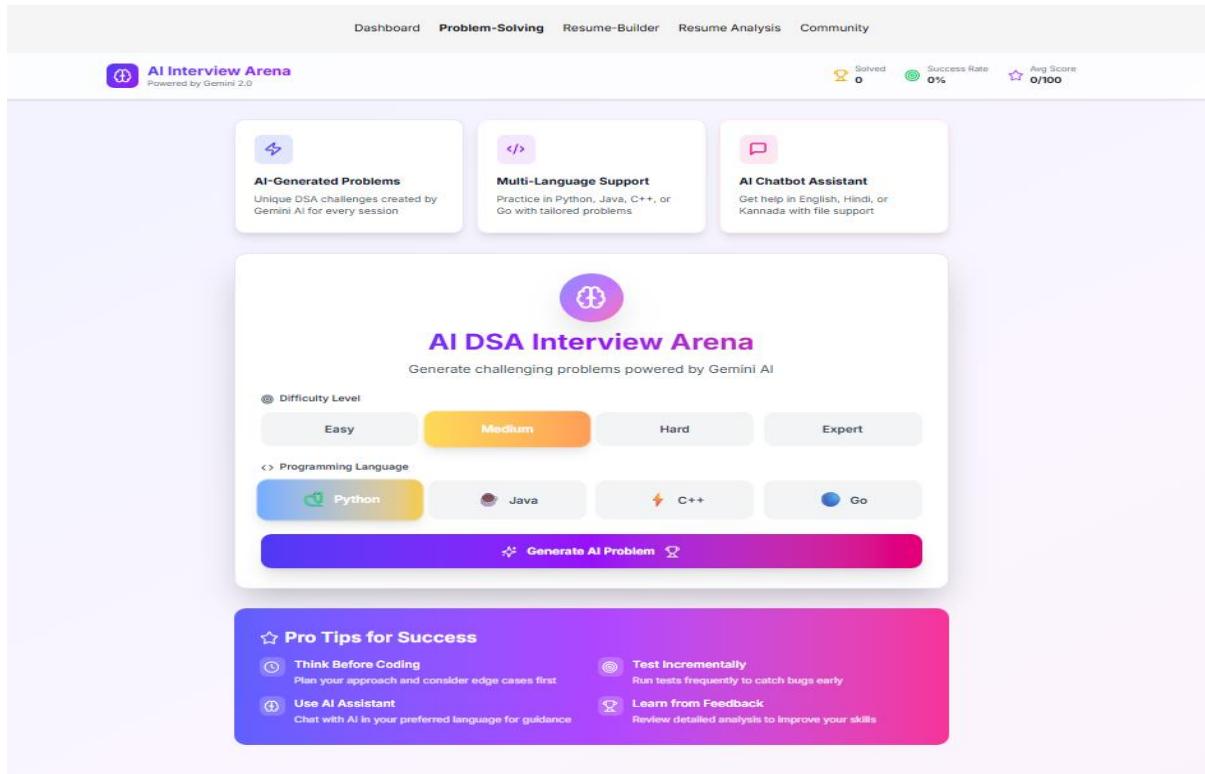


Fig-5 : AI With DSA Interview Problems

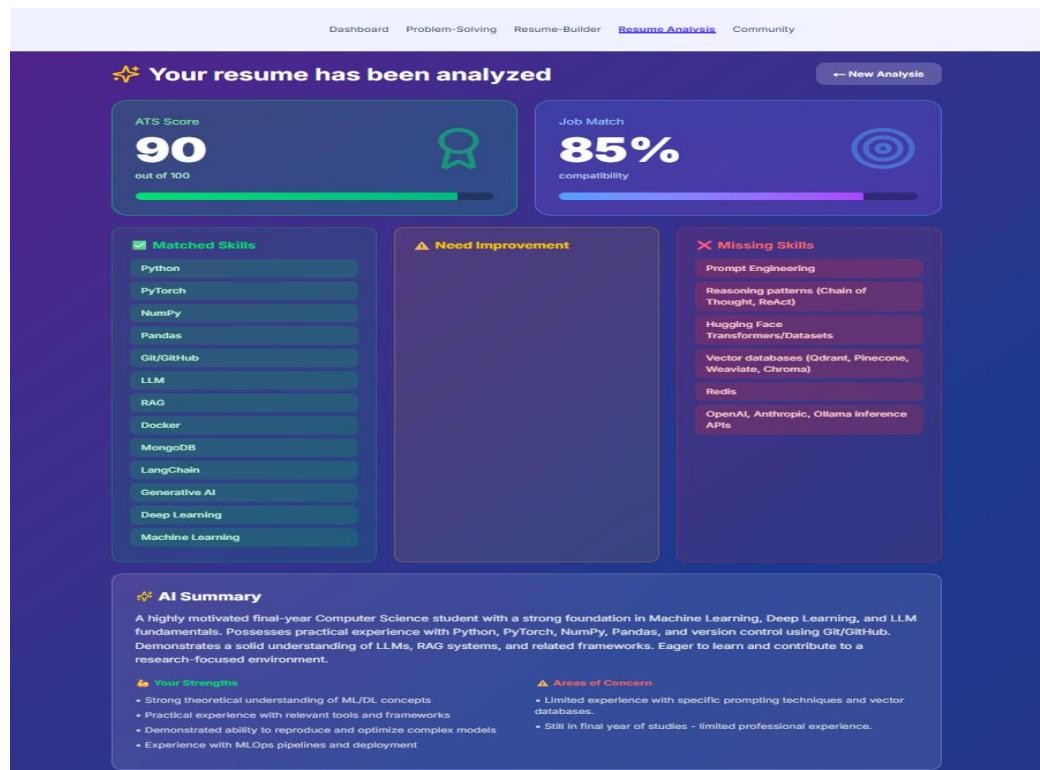
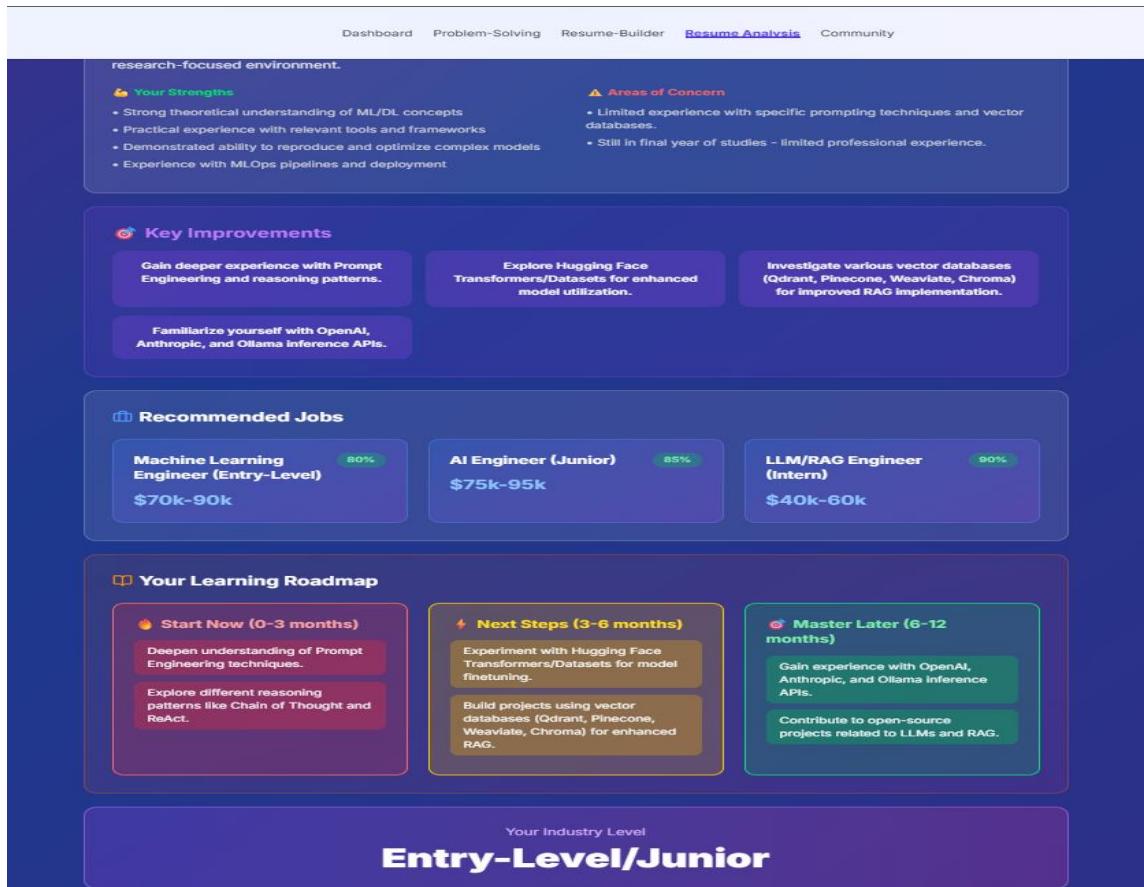



Fig-6: Job matching, Suggestion for the Current resume and Job

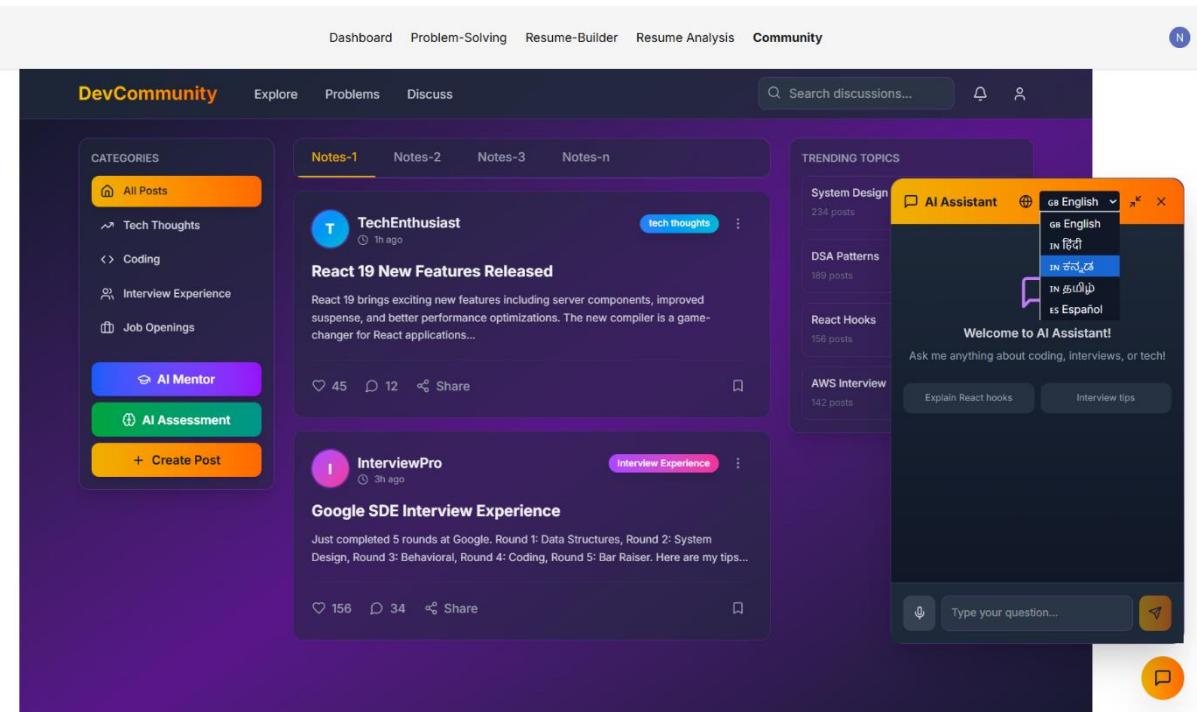


Fig-7: Community with AI mentor, Assessments, Chatbot

VIII. RESULT ANALYSIS

The AI-Powered Career Intelligence Platform was evaluated through extensive experimentation involving a diverse group of participants, including undergraduate students and early-career professionals. The objective of this evaluation was to assess the system's efficiency, usability, adaptability, and its overall impact on employability skill enhancement.

A. Evaluation of AI Interview Module: The AI Interview and Feedback Module showed a notable improvement in users' technical articulation and communication abilities. Following three iterative interview practice sessions, users showed an average 35% increase in communication clarity and confidence, according to experimental results. The module allowed users to track their progress over time by providing a performance rating on a scale of 0 to 100. The integrated speech-to-text model validated the system's multilingual adaptability by achieving an average transcription accuracy of 92.4% while maintaining high precision across Kannada, Hindi, and English.

B. Evaluation of Adaptive DSA Module: The Adaptive DSA Learning Module showed a measurable improvement in coding efficiency and logical reasoning. Post-training analysis indicated a 28% increase in problem-solving accuracy and a 25% reduction in average solution completion time, confirming the effectiveness of the adaptive difficulty mechanism. A cumulative problem-solving rating (out of 100) was generated for each user, reflecting their coding consistency, optimization level, and logical accuracy.

C. Evaluation of Resume optimization module: Resume quality and alignment with job descriptions were significantly improved by the ATS-Based Resume Builder. The average ATS compatibility score increased from 62% to 88% according to quantitative results, indicating the efficacy of NLP-driven keyword extraction and tone modification. Additionally, the system produced two important metrics that let users compare their resumes to industry norms: an ATS score per 100 and a Job Description-Resume Matching Score per 100.

D. Overall System Performance: A thorough assessment of every module verified the platform's capacity to provide precise, flexible, and data-driven career insights. The system produced unified performance ratings that included resume optimization, coding ability, and interview readiness. These findings confirm that the suggested platform is successful in providing a scalable, intelligent, and inclusive framework for AI-based career development.

VIII. CONCLUSION

The proposed AI-Powered Career Intelligence Platform offers a transformative approach to career development by unifying intelligent, adaptive, and multilingual technologies to bridge academic learning and real-world employability. Through AI, NLP, and ML, the system improves interview readiness, coding proficiency, and resume quality, as validated through experimental evaluations. Its modular structure—AI Interview and Feedback, Adaptive DSA Learning, ATS-Based Resume Builder, and an AI-Enhanced Community Platform—ensures scalability and broad usability, while multilingual support in Kannada, Hindi, and English enhances accessibility. Overall, the platform provides a data-driven and personalized framework for career growth, with future efforts focused on expanding domain areas, integrating real-time labor analytics, and applying reinforcement learning for refined feedback, laying groundwork for next-generation AI-driven employability ecosystems.

IX. FUTURE SCOPE

Future enhancements of the AI-Powered Career Intelligence Platform will focus on expanding its adaptability, scalability, and domain intelligence. Advanced deep reinforcement learning and context-aware recommendation systems can be integrated to refine real-time feedback and personalize user learning trajectories further. Incorporating large language models (LLMs) for dynamic interview simulations and multimodal analytics for emotion and gesture recognition will enhance assessment accuracy and user engagement.

In addition, future iterations will integrate real-time labor market analytics and predictive career path modeling to align learning outcomes with evolving industry demands. Cloud-based distributed training using high-performance computing (HPC) infrastructure will improve scalability and energy efficiency for large-scale user deployment. Moreover, enhanced multilingual support covering additional regional languages will ensure broader accessibility. These developments aim to evolve the platform into a comprehensive, globally deployable AI career ecosystem, bridging skill development with workforce transformation.

REFERENCES

- [1] Yas Patle, Rohit Kumar Patel, Sujit Kumar, Prof. Aakanksha Choubey, "AI Mock Interview," International Journal of Research Publication and Reviews, vol. 6, no. 4, pp. 13544–13551, Apr. 2025. ISSN 2582-7421.
- [2] Aman Sehgal, Anant Dapurkar, Love Kumar, Dr. Megha Mishra, "AI-Powered Resume Builder," International Journal of Research Publication and Reviews, vol. 6, no. 6, pp. 261–267, Jun. 2025. ISSN 2582-7421.
- [3] Shreya Anil Kokade, Prof. Yuvraj Nikam, "Resume Analyzer with ATS Score Using AI and ML," Journal of Emerging Technologies and Innovative Applications (JETIA), vol. 12, no. 4, Apr. 2025. ISSN 2349-5162.
- [4] Atharva Jadhav, Prajwalita Dongare, Omkar Aware, Suhani Bade, "CLEVERCV: Gen AI Driven Resume Builder Enhancing Resume Creation and ATS Optimization," International Research Journal of Modernization in Engineering, Technology and Science, vol. 7, no. 4, Apr. 2025. e-ISSN 2582-5208.
- [5] Muhammad Fakhrul Safitrraa, Muhamar Lubisa, Tien Fabrianti Kusumasaria, Deyana, "Advancements in Artificial Intelligence and Data Science: Models, Applications, and Challenges," Procedia Computer Science, vol. 234, pp. 381–388, 2024, Telkom University, Indonesia.
- [6] N. H. Patil1, S. H. Patel2, S.D. Lawand, "Research Paper on Artificial Intelligence and Its Applications," International Journal of Engineering Research, vol. 44, no. S-8, pp. 229–238, 2023. ISSN 0253-7214.
- [7] Yashaswini Nag. M. N, Lokesh Chowdary K, Shashank L, Gokul D, "AI-Driven Mock Interview: A New Era in Candidate Preparation," International Journal of Advanced Research in Computer and Communication Engineering, ISSN (O) 2278-1021, ISSN (P) 2319-5940.
- [8] Ninad Chavan, Prathamesh Shrivpuje, Sarthak Mali, Ayesha Sayyad, "AI-Based Mock Interview System," International Research Journal of Modernization in Engineering, Technology and Science, vol. 6, no. 10, Oct. 2024. e-ISSN 2582-5208.

[9] B. C. Lee and B. Y. Kim, "Development of an AI-Based Interview System for Remote Hiring," International Journal of Advanced Research in Engineering and Technology (IJARET), vol. 12, no. 3, pp. 654–663, Mar. 2021.

[10] Dhinakaran Thangaraj, Tamil Selvan K, Rahul PA, Aswin S," International Research Journal of Modernization in Engineering Technology and Science, vol. 7, no. 4, Apr. 2025. DOI: 10.56726/IRJMETS72440.

[11] Bakhtyar Ansari, Dr. Sapna Sinha, "AI Interview Mocker Web-Application," International Journal of Research Publication and Reviews, vol. 6, no. 5, pp. 7314–7319, May 2025. ISSN 2582-7421.

[12] Mrs. Divya, B. Dattatri, P. Anusha, M. Karthik, P. Vikram, M. Murari, "AI Mock Interview and Skill Set Platform," International Journal of Progressive Research in Engineering Management and Science (IJPREMS), vol. 5, no. 7, pp. 1026–1029, Jul. 2025. DOI: 10.58257/IJPREMS42758.

[13] Suguna.M, Sarankumar.K, Sri Nithiskumar.N, Rethesh.S, Bharath kumar.R, "Virtual Self-Practice Mock Interview Using Gen-AI," International Journal of Computer Science Publishing (IJCSPUB), vol. 14, no. 4, Dec. 2024. ISSN 2250-1770.

[14] Abinav Dayal , Jayasri Angara , Ranbir Sinha , Sumit Gupta , Ravi Shankar Saripalle , Sreenu Ponnada, "AI-Driven Mock Interviews: A Catalyst for Enhanced Interview Performance," Journal of Engineering Education Transformations, vol.39, no.1, Jul. 2025. ISSN 2349-2473, eISSN 2394-1707.

[15] Mr. Sandesh Dunbale, Mr. Shivam Patil, Mr. Bhavesh Vakare, Mr .Kapil Shinde, Project Guide: Ms. Poonam Dholi, "AI-Based Mock Interview System," International Journal of Research Publication and Reviews, vol. 6, no. 5, pp. 4887–4893, May 2025. ISSN 2582-7421.

[16] Dr. Prakash S, Siranjeevi. K, Vinod Kumar. N, Pathmesh. G, Ponnarasu. A, "NexInterview– AI-Driven Mock Interview Preparation Platform," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), vol. 5, no. 7, May 2025. ISSN 2581-9429.

[17] Dr. Radha Shirbhate, Namrata Bidaye, Harshal Kulkarni, Shivani Kangude, "AI-Based Mock Interview Simulation System for Job Preparation," Journal of Emerging Technologies and Innovative Research (JETIR), vol. 12, no. 5, May 2025. ISSN 2349-5162.

[18] C. Kamargaonkar, N. Dhondge, V. Shinde, A. Mulani, and A. Nagare, "AI Mock Interviewer," International Journal of Innovative Research in Technology (IJIRT), vol. 12, no. 2, Jul. 2025. ISSN 2349-6002.

[19] A. S. Akintola, M. Akintayo, T. Kadri, C. M. Oforwu, M. Michael, and M. Nwanna, "Adaptive AI Systems in Education: Real-Time Personalised Learning Pathways for Skill Development," Journal of Artificial Intelligence, Machine Learning and Data Science, vol. 3, no. 1, pp. 2489–2494, Mar. 2025. ISSN: 2583-9888. DOI: 10.51219/JAIMLD/Akinyemi-Sadeeq-Akintola/534.

[20] M. Brindha, M. Karthikeyan, T. Jessinth, A. S. Karthe, and A. Dhanush, "AI-Powered Resume Optimizer and Job Recommendation System," Journal of Emerging Technologies and Innovative Research (JETIR), Vol. 12, Issue 4, pp. 643–650, April 2025. ISSN: 2349-5162.

[21] Jagadevi P, Yeresime Suresh, "Implementation of a Word Prediction Model Using LSTM Neural Network with Optimization Strategies" 2025 International Conference on Multi-Agent Systems for Collaborative Intelligence (ICMSCI), Electronic ISBN:979-8-3315-0982-8, DVD ISBN:979-8-3315-0981-1, PoD ISBN:979-8-3315-0983-5, Jan 2025.