IJ A RCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15174

REAL-TIME CHAT APPLICATION USING
MERN STACK AND SOCKET.IO

Shambhavi Hamilpurkar?!, A G Vishvanath?
Department of MCA, BIT, K.R. Road, V.V. Pura, Bangalore, India'-2

Abstract: This paper presents a Real-Time Chat Application developed using the MERN stack and Socket.l1O, designed
to enable instant and reliable communication between users. The system facilitates real-time message exchange by
establishing persistent bidirectional connections, allowing users to send and receive messages without page refresh or
noticeable delay. The application supports essential chat features such as user authentication, one-to-one messaging, real-
time message delivery, and online user status tracking.

The backend of the system is implemented using Node.js and Express.js, while MongoDB is used for secure and efficient
data storage. Socket.lO is integrated to handle real-time communication and event-based message broadcasting. The
frontend is developed using React.js, providing a responsive and interactive user interface. Additional features such as
message history storage, timestamp display, and user session management enhance the practicality of the application for
real-world usage.

The proposed solution demonstrates how modern web technologies and real-time communication frameworks can be
combined to create a scalable, efficient, and user-friendly chat platform, suitable for instant messaging applications and
collaborative environments.

Keywords: Real-Time Chat Application, MERN Stack, Socket.lO, WebSockets, Instant Messaging, Full Stack
Development

I. INTRODUCTION

The rapid growth of internet connectivity and digital communication has significantly increased the demand for real-time
interaction platforms that enable instant and seamless information exchange. Modern users expect communication
systems to provide immediate message delivery, continuous connectivity, and responsive user experiences. Traditional
web-based messaging applications often rely on repeated server requests or page refresh mechanisms, resulting in
communication delays and reduced efficiency. These limitations highlight the need for intelligent and real-time
communication systems that support fast, reliable, and interactive messaging.

This project presents a Real-Time Chat Application developed using the MERN stack and Socket.lO to overcome the
constraints of conventional communication methods. The proposed system utilizes event-driven, bidirectional
communication to enable instant message transmission between connected users. By leveraging MongoDB for data
storage, Express.js and Node.js for backend processing, React.js for frontend development, and Socket.1O for real-time
communication, the application ensures efficient message handling and low latency. The integration of real-time sockets
with a web-based platform allows users to exchange messages instantly, maintain active sessions, and access chat history
without performance degradation. Unlike traditional messaging systems, this approach emphasizes scalability,
responsiveness, and user engagement, making it suitable for modern communication requirements and real-world
collaborative environments.

1.1 Project Description

This project implements a Real-Time Chat Application that enables instant communication between users through live
message exchange. The system allows users to send and receive messages in real time using Socket.l10, ensuring low-
latency and continuous connectivity. User interactions such as message transmission, reception, and status updates are
handled dynamically, providing a seamless chat experience. The application supports core functionalities including user
authentication, real-time one-to-one messaging, and message synchronization across active sessions.

The web application is developed using the MERN stack, where React.js manages the user interface, Node.js and
Express.js handle server-side operations, and MongoDB stores user data and chat histories securely. Socket.lO is

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 554

https://ijarcce.com/
https://ijarcce.com/

IJ A RCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15174

integrated with the backend to manage real-time communication events efficiently. The system also maintains chat
history in the database, allowing users to access previous conversations at any time. Overall, the project delivers a
scalable, efficient, and user-friendly real-time communication platform, suitable for modern messaging applications and
collaborative environments.

1.2 Motivation

The motivation for this project stems from the growing demand for instant and efficient digital communication in both
personal and professional environments. With the rapid expansion of online collaboration, users expect messaging
platforms to deliver messages immediately and maintain continuous connectivity. However, many traditional web-based
chat systems rely on periodic data fetching or page refresh mechanisms, which can lead to communication delays and a
poor user experience. This creates a need for a real-time, technology-driven communication solution that supports fast
and seamless interaction.

By leveraging modern web technologies such as the MERN stack and Socket.10, the proposed system eliminates latency
issues associated with conventional messaging methods. Real-time event-based communication enables instant message
delivery and synchronized interactions between users. The web-based nature of the application allows easy accessibility
without the need for specialized software or complex configurations. Ultimately, this project aims to provide a responsive,
scalable, and user-friendly real-time chat platform, enhancing communication efficiency and supporting modern
collaborative and social interaction needs.

Il. RELATED WORK

Paper [1] discusses traditional web-based chat applications that rely on HTTP request—response mechanisms for message
exchange. While these systems are simple to implement, they often suffer from latency issues due to repeated polling and
page refresh requirements, making them unsuitable for real-time communication.

Paper [2] focuses on messaging systems implemented using WebSocket technology to enable bidirectional
communication between clients and servers. These systems significantly reduce message delivery delays compared to
traditional approaches; however, the studies highlight challenges related to scalability, session management, and
integration with modern frontend frameworks.

Paper [3] explores real-time communication platforms developed using Node.js-based servers for handling concurrent
user connections. Although effective in managing multiple clients, these systems often lack a structured full-stack
architecture and do not provide persistent message storage or comprehensive user authentication mechanisms.

Paper [4] examines the use of JavaScript frameworks such as React.js to enhance the responsiveness and user experience
of chat interfaces. While these applications improve interactivity and interface performance, they typically rely on
external services for real-time communication, limiting full control over system design and data handling.

Paper [5] reviews recent advancements in full-stack real-time chat applications using the MERN stack and Socket.10.
The survey emphasizes the importance of integrating real-time communication frameworks with scalable backend
services and persistent databases to support secure messaging, message history tracking, and efficient user interaction in
modern communication platforms.

1. METHODOLOGY
A. System Environment
The system environment is designed to evaluate the Real-Time Chat Application under realistic and practical usage
conditions. The application operates in a web-based environment where multiple users act as independent clients
accessing the system through standard web browsers. Each user interacts with the platform by registering, logging in,
and exchanging messages in real time through a secure and responsive interface.
The backend environment is built using Node.js and Express.js, which manage user authentication, message handling,

and communication with the real-time socket server. Socket.lO is used to establish persistent, bidirectional
connections between clients and the server, enabling instant message transmission and event-based communication.

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 555

https://ijarcce.com/
https://ijarcce.com/

IJ A RCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

Inlll International Journal of Advanced Research in Computer and Communication Engineering

LARCCE

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15174

MongoDB serves as the database for storing user information, chat messages, and conversation histories in a
structured and scalable format.

This setup simulates a real-world communication environment where multiple users can interact simultaneously while
ensuring data consistency and security. The system architecture supports efficient message delivery, reliable
performance, and scalability, allowing future enhancements such as group chats, media sharing, cloud deployment,
and integration with mabile applications.

Start

!

Open Application

l

User Authenticated?

P & /

/

No
-

Register User

l Yes

Login User

C)
/

N =

Open Chat Interface

P il I

Select Contact (End

—

Type Message

|
|
-
Validate Message
|

|
-
Send Message
-
Transmit via Socket

[

-

Store Message

N J
—-

Display Message

Fig.1.Flowchart of methodology
B. System Architecture

e Client-Side Processing:
In the Real-Time Chat Application, user interactions such as registration, login, and message composition are
handled through a responsive web interface developed using React.js. User inputs, including login credentials and
chat messages, are validated at the client level to ensure data consistency and prevent invalid submissions. Once
validated, messages and events are transmitted to the server in real time using Socket.10, enabling seamless and
instant communication without page reloads.

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 556

https://ijarcce.com/
https://ijarcce.com/

IJ A RCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15174

The client-side interface dynamically updates chat windows, message timestamps, and online user status based on
real-time events received from the server. This ensures a smooth and interactive user experience during live
communication sessions.

e Server-Side Execution:

The backend architecture is implemented using Node.js and Express.js, which manage user authentication, session
handling, and message routing. Socket.lO establishes persistent bidirectional connections between the server and
connected clients, allowing real-time message broadcasting and event handling. When a message is received from
a client, the server processes the event, stores the message in MongoDB, and instantly delivers it to the intended
recipient.

The server architecture is designed to efficiently manage multiple concurrent connections while maintaining
message order, delivery reliability, and data security. This approach ensures low latency, scalability, and reliable
performance for real-time communication across the application.

C. Adaptive Prediction Mechanism

The communication mechanism of the Real-Time Chat Application is designed to be adaptive and extensible to
accommodate varying user loads and evolving communication requirements. The system dynamically manages socket
connections, enabling efficient handling of multiple concurrent users without compromising message delivery speed or
reliability. As the number of active users increases, the socket-based architecture ensures consistent real-time
communication performance.

The application architecture allows seamless upgrades and feature extensions, such as the introduction of group chats,
message acknowledgments, typing indicators, and media sharing. By leveraging the event-driven nature of Socket.lO
and the scalable backend infrastructure of the MERN stack, the system can adapt to changing usage patterns while
maintaining stable and synchronized message exchange across all connected clients.

D. Implementation Flow

The user accesses the Real-Time Chat Application through a web browser.

The user registers or logs in using secure authentication credentials.

After successful authentication, the user is redirected to the chat interface.

The client establishes a real-time socket connection with the server using Socket.IO.

The user composes and sends a message through the chat interface.

The server receives the message event and processes it in real time.

The message is stored in the MongoDB database for conversation history.

The server instantly delivers the message to the intended recipient through the socket connection.
The chat interface updates dynamically to display hew messages and timestamps.

N RWNE

E. Hardware and Software Requirements

e Hardware:
A standard computer system with a minimum of 8 GB RAM is sufficient to run the Real-Time Chat Application.
Since the application is web-based, end users do not require any specialized hardware and can access the system
using commonly available devices such as desktops, laptops, or mobile devices with an active internet connection.

e Software:
Node.js for backend server development, Express.js for handling application logic and API requests, MongoDB for
database management, and Socket.10 for real-time communication. React.js is used for frontend development, along
with HTML, CSS, and JavaScript to create a responsive and interactive user interface. These technologies together
form the MERN stack, enabling efficient full-stack development and real-time message handling.

IV. SIMULATION AND EVALUATION FRAMEWORK
This section describes the system design, execution flow, and evaluation strategy adopted for the Real-Time Chat
Application. The framework focuses on validating the effectiveness of real-time communication, message delivery

reliability, and overall system performance under realistic usage conditions. The application is implemented using the
MERN stack, with Socket.lO integrated to enable real-time bidirectional communication between users.

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 557

https://ijarcce.com/
https://ijarcce.com/

IJ A RCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15174

The evaluation process assesses the system’s ability to handle concurrent user interactions, maintain low message latency,
and ensure consistent message synchronization across active sessions. Simulation scenarios are designed to replicate real-
world usage patterns, including multiple users exchanging messages simultaneously, repeated message delivery, and
retrieval of chat history. This framework helps verify the stability, responsiveness, and scalability of the real-time chat
system in practical communication environments.

A. System Architecture and Workflow
The overall architecture is designed to support efficient real-time communication while ensuring data security, usability,
and scalability. The key components of the system are outlined below:

e User Interaction Layer: Users interact with the application through a web-based interface developed using
React.js. This layer allows users to register, log in, view active conversations, and send or receive messages in
real time. The interface dynamically updates chat messages, timestamps, and user status based on real-time events.

e Application Processing Layer: The backend layer, implemented using Node.js and Express.js, processes user
requests such as authentication, message handling, and session management. This layer validates incoming data,
manages socket connections, stores chat messages in the database, and coordinates real-time message delivery
using Socket.10.

o Real-Time Communication Module: Socket.lO acts as the core real-time communication module, establishing
persistent bidirectional connections between clients and the server. It enables instant message broadcasting, event
handling, and synchronization of chat data across connected users, ensuring low-latency and reliable
communication suitable for real-time web deployment.

B. Simulation Setup
The simulation environment is designed to closely represent real-world usage of the real-time chat application by multiple
users interacting simultaneously under different conditions.

e User Data Simulation: Multiple test cases are created using different user accounts to simulate real-time messaging
behavior. These test cases include scenarios with single users, multiple concurrent users, and users joining or leaving
chat sessions. The simulation evaluates system performance, message delivery accuracy, and session stability during
continuous communication.

e Scenario Testing: Various functional scenarios are tested to ensure robustness and reliability of the application.
These include successful user registration and login, invalid credential handling, real-time message sending and
receiving, repeated message exchanges, session termination, and retrieval of chat history after re-login. Error
conditions such as network interruptions and invalid message inputs are also simulated to verify proper error
handling and system recovery.

C. Prediction and Evaluation Process

During the simulation phase, user-submitted data is processed through a predefined preprocessing pipeline to ensure
correctness, consistency, and completeness of inputs. The validated data is then forwarded to the trained machine learning
model, which performs prediction based on learned patterns from historical data.

The system generates a prediction result along with a corresponding confidence or probability score. These outputs are
securely stored in the database along with relevant metadata such as user details and timestamp. The predicted outcome
is immediately displayed to the user through the interface, accompanied by appropriate recommendations and
precautionary guidelines to support informed decision-making.

This prediction and evaluation process is executed repeatedly across multiple test cases representing diverse input
conditions. Repeated simulations help assess the consistency, accuracy, and reliability of the model’s predictions,
ensuring stable system behavior and correct performance under varying scenarios.
D. Results and Observations

e Prediction Accuracy: The system demonstrated reliable and consistent classification of sleep conditions across a

wide range of input scenarios. The predictions were meaningful and aligned with expected outcomes, indicating
effective model performance and stable behavior during simulation.

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 558

https://ijarcce.com/
https://ijarcce.com/

IJ A RCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
- Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15174
o System Reliability: The integration between the web application, machine learning model, and database operated

smoothly throughout the evaluation process. The system maintained minimal response time, ensured proper data
storage, and showed no instances of data loss or processing failure during repeated simulations.

e Usability and Practicality: The evaluation confirmed that the application is easy to use, even for non-technical
users. The clear interface, quick response, and understandable results make the system suitable for preliminary sleep
health assessment and practical for real-world usage.

v UiV Reatime Lhat App X W Kealtime LhatApp K== = o X
£ O C localhost:5173/logi > G & ¢t ® - Mom
Chatty (G

aBL LG G Sy e

Welcome back!
Sign in to continue your conversations and catch up with you
Welcome Back messages,
our account
Amelia Clarke

&, Phone

Email
Hey, did you check the new design?

| shambhavihB42@gmail. com

Password Yep! Looks super clean. Shipping it today "

Great! I'l prep the release notes

Fig. 2. Prediction Page
Model Performance and Adaptability Analysis

e System Stability and Convergence: The real-time chat application demonstrated stable and consistent behavior
during testing and continuous usage scenarios. As the number of active users and message exchanges increased,
the system maintained steady performance without crashes, message duplication, or session inconsistencies.
This confirms the robustness of the backend logic, socket communication layer, and session management
mechanisms.

e Message Delivery Accuracy and Performance: The accuracy of real-time message delivery improved under
repeated communication scenarios. Messages were transmitted instantly to intended recipients with correct
ordering and timestamps. The integration of Socket.io ensured low-latency communication, validating the
effectiveness of the chosen real-time communication framework for handling frequent and concurrent message
exchanges..

e Handling of Heterogeneous User Interactions:.The system effectively handled diverse user interaction
patterns, including one-to-one chats, repeated messaging, session reloads, and multiple concurrent users.
Variations in user activity levels, login durations, and message frequency were managed efficiently without
affecting system responsiveness or message consistency.

o Result Validation and User Experience: The outcomes of message transmission, delivery confirmation, and
chat history retrieval were clearly reflected in the user interface. Immediate message display, preserved chat
history, and seamless session continuity enhanced user confidence in the system. The clear visual feedback and
reliable message flow ensured that system behavior was transparent, predictable, and suitable for real-world
real-time communication.

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 559

https://ijarcce.com/
https://ijarcce.com/

IJARCCE

ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026

v @ 'V Realtime Chat App X W/ Realtime Chat App
& O @ localhosts5173
Chatty
,9,’, Chats
| 2 Contacts. B Groups

Show online only (1 online:

madhuri joshi
You: Video call (12

Emma Thompson

You: Cancelled vide all
John
You: Voice call

Abhi

. Alexander Martin

Y

@‘- Amelia Garcia
a Ava Wilson

Impact on System Efficiency:

DOI: 10.17148/IJARCCE.2026.15174
I — o X

G /=8 - Oyox

Welcome to Chatty!

Select a conversation from the sidebar to start chatting

Fig. 3. Prediction Result Page

© IJARCCE

Low Computational Overhead: The real-time chat application operates efficiently with minimal
computational overhead. The use of event-driven communication through Socket.io ensures that messages are
transmitted only when required, avoiding continuous polling and unnecessary server load. This allows the
system to handle multiple concurrent users without degradation in performance.

Efficient Message Processing: Only essential message data such as sender 1D, receiver 1D, content, and
timestamp are processed during communication. This lightweight message handling reduces processing
complexity and ensures fast message delivery with minimal latency, resulting in smooth real-time interaction
across different devices and network conditions.

Secure and Controlled Data Flow: User data and chat messages are transmitted securely through authenticated
sessions and controlled socket connections. Messages are stored in the database only when required for chat
history and session continuity. This controlled data flow enhances system reliability while ensuring data
integrity, privacy, and protection against unauthorized access.

Scalable Web-Based Architecture: The MERN-based backend architecture, combined with modular design
and WebSocket communication, supports easy scalability as the number of users increases. The system
efficiently manages concurrent connections and message exchanges without significant impact on response time
or reliability, making it suitable for real-world deployment and future expansion.

This work is licensed under a Creative Commons Attribution 4.0 International License 560

https://ijarcce.com/
https://ijarcce.com/

IJ A RCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15174

/ Realtime Chat App X W Realtime Chat App x I+ — (=] X

Q8

Gl <

® localhost:5173 G B =8 - Do

Chatty 3

o
o)

O Chats Shambhavi Q

-
P Groups
hii

Show online only (2 oniine

¢ Video call
Shambhavi
®

Abhi

Missed voice call
.\. Alexander Martin % Click to call bac

ﬁ Amelia Garcia
72 (=] [}

e Ava Wilson Image Video Document

Cancel

@ Schedule

";’ Benjamin Taylor

Bobby

Fig. 4. Active Chat Interface with Media Options
V. RESULTS AND DISCUSSION

The experimental evaluation of the Real-Time Chat Application demonstrates the effectiveness of WebSocket-based
communication in enabling instant and reliable message exchange between users. During testing, the system showed
consistent performance across various usage scenarios, including user authentication, one-to-one messaging, session
handling, and chat history retrieval. Messages were delivered in real time with minimal latency, confirming the suitability
of Socket.io for real-time communication applications.

By integrating a secure backend with real-time socket communication and persistent database storage, the system
successfully maintained seamless interaction between users. Authentication and session management ensured controlled
access, while message validation and storage mechanisms preserved data integrity. The ability to retrieve previous
conversations after re-login further validates the reliability and continuity of the communication process.

The evaluation also confirms that the system operates efficiently with low computational overhead. Event-driven message
transmission avoids unnecessary server load, allowing the application to handle multiple concurrent users without
performance degradation. Secure handling of user credentials, controlled data flow, and structured database interactions
ensure privacy, reliability, and protection against unauthorized access.

VI. CONCLUSION

This paper presented the design and implementation of a web-based Real-Time Chat Application aimed at enabling
secure, efficient, and instantaneous communication between users. By integrating a modern web interface with a backend
server and WebSocket-based communication using Socket.io, the system provides seamless real-time messaging while
maintaining reliable session management and data persistence.

The experimental evaluation demonstrated consistent system performance, low message latency, and stable handling of
multiple concurrent users. Secure authentication mechanisms, structured message storage, and controlled data flow
ensured data integrity, privacy, and continuity of communication across sessions. The ability to retrieve chat history and
maintain session consistency further enhanced the reliability and usability of the application.

Overall, the proposed system proves to be scalable, user-friendly, and effective for real-time communication scenarios.
Its modular architecture and use of widely adopted technologies make it suitable for academic implementation as well as
real-world deployment. The system also provides a strong foundation for future enhancements such as group
communication, media sharing, and advanced security features, highlighting its potential as a flexible and extensible real-
time messaging platform.

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 561

https://ijarcce.com/
https://ijarcce.com/

IJ A RCCE ISSN (O) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15174

VI. FUTURE WORK

Future work for this project will focus on enhancing the real-time chat application by extending its functionality,
scalability, and security. One major enhancement includes support for group chats and broadcast messaging, allowing
multiple users to communicate within shared chat rooms. Media sharing features such as image, audio, and document
exchange can also be integrated to enrich user interaction.

Additional improvements may include end-to-end message encryption to strengthen data privacy and security during
communication. The system can further be optimized to handle a larger number of concurrent users through load
balancing and distributed backend services. Implementing user presence indicators, read receipts, and typing notifications
would improve real-time interaction and overall user experience.

The application can also be extended to mobile platforms to increase accessibility and usability across devices. Advanced
features such as message search, chat backup, and moderation tools can be incorporated to support long-term usage and
administrative control. These enhancements aim to make the chat application more robust, scalable, and suitable for real-
world communication needs.

REFERENCES

[1]. Fette, I., & Melnikov, A.
The WebSocket Protocol (RFC 6455).Internet Engineering Task Force (IETF), 2011.
https://datatracker.ietf.org/doc/html/rfc6455

[2]. Lee, J, & Park, K.
Design and Implementation of Web-Based Chat Applications .International Journal of Computer Applications,
Vol. 178, No. 24, 2021.
https://www.ijcaonline.org/archives/volumel78/number24

[3]. Kumar, A., & Verma, S.
Secure Authentication Techniques for Modern Web Applications .International Journal of Computer Science and
Network Security, 2020.
http://paper.ijcsns.org/07_book/202005/20200507.pdf

[4]. Zhang, M., & Chen, L.
Performance Analysis of Real-Time Messaging Systems .Journal of Network and Computer Applications, Elsevier,
20109.
https://www.sciencedirect.com/science/article/pii/S1084804519302155

[5]. Williams, R., & Brown, T.
Socket.io-Based Real-Time Communication Frameworks .International Journal of Web Engineering and
Technology, 2020.
https://www.inderscience.com/info/inarticle.php?artid=110438

[6]. Anderson, P., & Smith, J.
Database Design Considerations for Messaging Applications .International Journal of Database Management
Systems, 2020.
https://airccse.org/journal/ijdms/papers/1220ijdms01.pdf

[7l. Rao,S., & Mehta, N.
Group Communication Models in Instant Messaging Systems .Journal of Distributed Computing Systems, 2019.
https://www.sciencedirect.com/science/article/pii/S0743731518306512

[8]. Tilkov, S., & Vinoski, S.
Node.js: Using JavaScript to Build High-Performance Network Programs .IEEE Internet Computing, Vol. 14, No.
6, 2010.
https://ieeexplore.ieee.org/document/5674020

[9]. Grigorik, I.
High Performance Browser Networking.O’Reilly Media, 2013.
https://hpbn.co/

[10]. Banks, A., & Porcello, E.
Learning React: Modern Patterns for Developing React Apps. O’Reilly Media, 2020.
https://www.oreilly.com/library/view/learning-react-2nd/9781492051718/

© IJARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 562

https://ijarcce.com/
https://ijarcce.com/
https://datatracker.ietf.org/doc/html/rfc6455
https://www.ijcaonline.org/archives/volume178/number24
http://paper.ijcsns.org/07_book/202005/20200507.pdf
https://www.sciencedirect.com/science/article/pii/S1084804519302155
https://www.inderscience.com/info/inarticle.php?artid=110438
https://airccse.org/journal/ijdms/papers/1220ijdms01.pdf
https://www.sciencedirect.com/science/article/pii/S0743731518306512
https://ieeexplore.ieee.org/document/5674020
https://hpbn.co/
https://www.oreilly.com/library/view/learning-react-2nd/9781492051718/

