

Prediction And Detection of Pancreatic Cancer Using Explainable Multi Model AI

Akshaya N Babu¹, Dr Madhu H K²

Department of MCA, BIT, K.R. Road, V.V. Pura, Bengaluru, India.

Associate Professor and HOD, Department of MCA, BIT, K.R. Road, V.V. Pura, Bengaluru, India.

Abstract: Pancreatic cancer is one of the most aggressive and life-threatening malignancies due to its late diagnosis, complex progression patterns, and limited treatment options. Traditional diagnostic approaches primarily rely on radiological interpretation and clinical biomarkers, which are often subjective and insufficient for early detection. To address these challenges, this paper proposes an Explainable Multimodal Artificial Intelligence (AI) system for the prediction and detection of pancreatic cancer.

The proposed system integrates CT/MRI medical imaging data with clinical and laboratory parameters to perform comprehensive cancer analysis. Advanced machine learning and deep learning techniques are employed to extract meaningful features from multimodal inputs, enabling accurate cancer stage prediction and survival estimation. Explainable AI (XAI) methods such as heatmaps and feature importance analysis are incorporated to enhance model transparency and clinical trust. The system is implemented using Python, Flask, and modern AI frameworks, providing a scalable web-based diagnostic platform. Experimental results demonstrate improved prediction accuracy, reduced diagnostic uncertainty, and enhanced interpretability, making the proposed system a reliable clinical decision-support tool.

Keywords: Pancreatic Cancer Prediction, Multimodal AI, Explainable AI, Medical Imaging, Clinical Data Analysis, Deep Learning

I. INTRODUCTION

Pancreatic cancer is recognized as one of the deadliest forms of cancer, characterized by a high mortality rate and poor prognosis. The primary reason for this is the absence of early symptoms and the limitations of conventional diagnostic techniques. Most patients are diagnosed at an advanced stage, significantly reducing survival rates. Current diagnostic practices depend heavily on medical imaging, laboratory tests, and expert interpretation, which can be time-consuming and prone to inter-observer variability.

With the rapid growth of medical data and advancements in Artificial Intelligence (AI), intelligent diagnostic systems have emerged as promising solutions to enhance disease detection and prognosis. Machine learning and deep learning models have demonstrated significant potential in analyzing complex medical images and structured clinical data. However, many existing AI-based diagnostic systems operate as black boxes, limiting their acceptance in clinical environments due to the lack of transparency and interpretability.

To overcome these limitations, **Explainable Multimodal AI** has gained attention as it combines multiple data sources while providing interpretable predictions. By integrating imaging data with clinical and laboratory parameters, multimodal AI systems can capture complementary information that improves diagnostic accuracy. Explainable AI techniques further ensure that clinicians can understand and trust the model's predictions.

In this context, this paper presents an **Explainable Multimodal AI-based system for pancreatic cancer prediction and detection**. The system aims to assist medical professionals by providing accurate predictions, interpretable visual explanations, and structured diagnostic reports, thereby improving clinical decision-making and patient outcomes.

II. LITERATURE REVIEW

Several studies have explored AI-based approaches for cancer diagnosis using medical imaging and clinical data. Early research focused on applying traditional machine learning algorithms such as Support Vector Machines and Decision Trees to classify medical images and predict cancer outcomes. While these approaches showed promising results, they were limited by manual feature extraction and reliance on single-modal data.

Recent advancements introduced deep learning models, particularly Convolutional Neural Networks (CNNs), for automated feature extraction from CT and MRI images. These models improved detection accuracy but often lacked

interpretability, making them unsuitable for critical clinical decision-making. Other studies incorporated clinical biomarkers and laboratory data to enhance prediction performance, highlighting the importance of multimodal learning.

Explainable AI techniques such as Grad-CAM and SHAP have been proposed to visualize model decisions and feature contributions. These methods improve transparency and clinician trust, yet many existing systems fail to integrate explainability within a complete end-to-end diagnostic framework. Additionally, limited research focuses specifically on pancreatic cancer using a fully explainable multimodal approach.

III. RESEARCH GAPS

From the literature review, several research gaps are identified:

- Limited integration of medical imaging and clinical data within a single diagnostic framework
- Lack of explainability in deep learning-based pancreatic cancer prediction systems
- Absence of end-to-end automated diagnostic platforms with report generation
- Insufficient focus on clinical trust and interpretability for AI-based predictions

These gaps highlight the need for a comprehensive, transparent, and clinically interpretable AI system for pancreatic cancer detection.

IV. PROPOSED METHODOLOGY

The proposed system follows a structured multimodal AI pipeline. Medical imaging data (CT/MRI scans) and clinical laboratory parameters are collected through a secure web interface. Input data undergo validation and preprocessing to ensure quality and consistency. Image preprocessing techniques are applied to enhance contrast and normalize input scans, followed by feature extraction using deep learning models.

Clinical and laboratory data are processed separately to extract meaningful statistical and clinical features. Multimodal data fusion techniques combine imaging and clinical features into a unified representation. Trained machine learning models then predict cancer stage, survival probability, and risk level.

Explainable AI methods are applied to generate visual explanations such as heatmaps and feature importance graphs. Finally, a structured diagnostic report is generated and presented to medical professionals through an interactive dashboard.

V. EXPERIMENTAL RESULTS

The system was evaluated using a dataset consisting of CT/MRI images and corresponding clinical parameters. The results demonstrate improved prediction accuracy compared to single-modal approaches. The multimodal fusion model achieved higher consistency in stage prediction and survival estimation.

Explainable outputs successfully highlighted tumor regions and influential clinical features, aiding clinical interpretation. The system also demonstrated stable performance and scalability when handling multiple patient records, validating its practical applicability in real-world clinical environments.

VI. CONCLUSION

This paper presented an Explainable Multimodal AI system for pancreatic cancer prediction and detection. By integrating medical imaging and clinical data, the system overcomes limitations of traditional diagnostic approaches and black-box AI models. The inclusion of explainable AI techniques enhances transparency, trust, and clinical usability. Experimental evaluation confirms the system's effectiveness, accuracy, and reliability as a clinical decision-support tool. The proposed approach demonstrates significant potential in improving early diagnosis and treatment planning for pancreatic cancer.

VII. FUTURE SCOPE

Future enhancements may include the integration of advanced deep learning architectures such as transformer-based models, support for multi-center datasets, and real-time clinical decision support. Incorporating genomic data and expanding explainability techniques will further improve diagnostic accuracy and clinical adoption. Cloud-based deployment and integration with hospital information systems can also enhance scalability and accessibility.

REFERENCES

- [1]. Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. MIT Press, Cambridge, MA.
- [2]. Aggarwal, C. C. (2018). *Neural Networks and Deep Learning*. Springer International Publishing.
- [3]. Mitchell, T. M. (1997). *Machine Learning*. McGraw-Hill Education, New York.
- [4]. Russell, S., & Norvig, P. (2021). *Artificial Intelligence: A Modern Approach* (4th ed.). Pearson Education.
- [5]. Esteva, A., Kuprel, B., Novoa, R. A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. *Nature*, 542(7639), 115–118.
- [6]. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. *Advances in Neural Information Processing Systems (NeurIPS)*, 30.
- [7]. Selvaraju, R. R., Cogswell, M., Das, A., et al. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 618–626.
- [8]. Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A survey on deep learning in medical image analysis. *Medical Image Analysis*, 42, 60–88.
- [9]. Kourou, K., Exarchos, T. P., Exarchos, K. P., et al. (2015). Machine learning applications in cancer prognosis and prediction. *Computational and Structural Biotechnology Journal*, 13, 8–17.
- [10]. Huang, Y., Liu, Z., He, L., et al. (2020). Radiomics signature: A potential biomarker for the prediction of disease-free survival in pancreatic cancer. *European Radiology*, 30(9), 5045–5056.