IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15197

AGENTIC AUTOCODE ANALYZER

Gagan B?, Sandarsh Gowda M M?
Department of MCA, BIT, K.R. Road, V.V. Pura, Bangalore, India
Assistant Professor, Department of MCA, BIT, K.R. Road, V.V. Pura, Bengaluru, India

Abstract: In the contemporary software engineering landscape, developers and students frequently encounter the
challenge of onboarding to large, unfamiliar codebases. Platforms like GitHub host millions of repositories, yet
understanding the underlying logic, architecture, and dependency flow of these projects remains a labor-intensive process
dependent on manual traversal and often outdated documentation. To mitigate this inefficiency, this paper presents the
Agentic AutoCode Analyzer, a web-based intelligent system designed to automate the comprehension of software
repositories.

The proposed system accepts a GitHub repository URL, autonomously performs a shallow clone operation to minimize
bandwidth usage, and recursively maps the directory structure to build a comprehensive context object. By integrating a
Large Language Model (LLM) reasoning engine via a local or API-based inference layer, the system functions as an
interactive "agent." This agent assists users by answering architectural queries, explaining specific code syntax, and
summarizing project objectives. Experimental results indicate that the system significantly reduces the cognitive load
required for code comprehension and offers a viable tool for both educational and professional software development
environments.

Keywords: Artificial Intelligence, Static Code Analysis, Large Language Models (LLM), Software Engineering
Education, Automated Documentation, React.js, Node.js.

I. INTRODUCTION

The democratization of software development through open-source platforms has led to an explosion in available code.
However, accessibility does not imply comprehensibility. When a developer encounters a new repository, they must
mentally reconstruct the author's intent, a process known as "program comprehension." This process is often hindered by
complex folder structures, lack of comments, and the use of diverse frameworks that may be unfamiliar to the reader.

1.1 Problem Statement

Traditional methods of code exploration are linear and disconnected. A developer reads a README.md file, then
manually opens files in a text editor to trace function calls. This manual context switching is inefficient. Furthermore,
existing static analysis tools (e.g., SonarQube) focus on quality assurance—finding bugs and security vulnerabilities—
rather than explanation. There is a distinct lack of tools that answer the question: "What does this specific module actually
do?"

1.2 Proposed Solution

The Agentic AutoCode Analyzer addresses this gap by combining automated file system operations with generative Al.
The system automates the tedious task of setting up a local environment for code reading. It provides a unified dashboard
where the file structure, code content, and an intelligent assistant coexist.
The contributions of this paper are as follows:

1. Automated Context Extraction: A mechanism to recursively scan and index repository content.

2. Interactive Reasoning: Deployment of an LLM agent to interpret code semantics.

3. Modular Web Architecture: A scalable MERN-stack implementation (MongoDB, Express, React, Node)

tailored for code analysis.

The remainder of this paper is organized as follows: Section Il reviews existing literature. Section 11 details the feasibility
and requirements. Section 1V and V describe the system design and implementation. Section VI presents testing
strategies, and Section V1I concludes the study.

1. LITERATURE SURVEY

Code comprehension tools have evolved from simple syntax highlighters to complex dependency mappers. However,
most require significant configuration.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 727

https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15197

Table I: Comparison with Existing Approaches

Feature Manual Static Analysis Tools (e.g.,, Agentic AutoCode Analyzer
Exploration SonarQube) (Proposed)

Primary Goal Implementation Quality/Security Comprehension/Explanation

User Interaction = Passive Reading Report Viewing Interactive Chat

Context User-dependent File-level Repository-level

Awareness

Setup Time High (Clone + High (Config) Low (Instant Web Access)
Install)

As shown in Table I, existing solutions do not prioritize the learning aspect of software engineering. Research by
Pressman [1] highlights that maintenance and comprehension consume over 60% of the software lifecycle, validating the
need for automated comprehension tools.

I1l. FEASIBILITY AND REQUIREMENT ANALYSIS
Before implementation, a thorough feasibility study was conducted to ensure the project's viability.
3.1 Technical Feasibility
The system leverages standard web technologies. The frontend uses React.js for dynamic rendering, which is essential
for large file trees. The backend runs on Node.js, which provides the fs (File System) module necessary for scanning
directories. The integration of simple-git allows for efficient repository handling. Since these technologies are mature
and open-source, the project is technically robust.
3.2 Economic Feasibility
The solution is cost-effective as it relies on open-source libraries (express, cors, simple-git). The Al component can utilize
local models (like GPT4AII) or affordable APIs, eliminating the need for expensive enterprise licenses or proprietary
hardware.

3.3 Operational Feasibility

The system requires no specialized training. Users simply input a URL. The intuitive interface ensures that students and
developers can integrate it into their workflow immediately, ensuring high operational feasibility.

IV.SYSTEM DESIGN
The system follows a modular client-server architecture designed for separation of concerns.
4.1 Architecture Overview
1. Presentation Layer: A React-based Single Page Application (SPA) that manages state variables for the file tree
(fileList) and current file content (content).

2. Logic Layer: An Express.js server listening on port 5174. It handles API routes for /analyze and /chat.
3. Data Layer: Temporary file storage for cloned repositories.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 728

https://ijarcce.com/
https://ijarcce.com/

YV

LARCCE

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15197

| User Tntars Gitilub URL |

!

ves No

Backend Wpocessing l

| Send POS | /analyze Request | Show Error Message

!

| Git Clone Repository |

!

I Recursive Dircectory Soan |

]!

Filter .git/node_modules?

e=s

| Build ontext Object |

1

| Store in ln-Memory State |

-

| Return File List to UL

!

| Display File Treea |

!

User Action

Saolool File Ask Quoslion Faxil

| Fetch & Display Code | | Send to LLM Engine |

-

| Gonorato AT Rospanso |

S

| Display Answer

Fig.1.Dataflow diagram of the system

4.2 Data Flow Diagram (DFD) Description

The data flow within the system operates in a sequential pipeline:
1. User Input: The user submits a URL via the UI.

2. Validation & Cloning: The backend validates the URL pattern. If valid, simple-git clones the target to

server/repos/{timestamp}.

3. Context Building: A recursive directory scanner walks the folder tree, ignoring artifacts like node_modules.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License

https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15197

4. Inference: When a user queries the system, the relevant code snippet and the query are packed into a prompt
and sent to the LLM Reasoner.
5. Response: The natural language explanation is returned to the frontend.

ReactUI

+state repolrl
+state fileList

+analyzeRepo()
+askChatbot()

HTTP Requests

ExpressServer
+port: 5174
+use(cors)
+use(json) \
Routes Calls AT

AnalyzeRoute LLMReasoner

+APL_URL: string

+POST /analyze()

_gitClone(url) +explain(prompt)

+chat(question)

/ N |

Uses Updates Reads Context
AnalyzerService RepoState

-lastRepoContext: Object
+huildRepoContext(dir)
-walkDirectory(dir) +setLastRepoContext(ctx)
-readReadme(dir) +getLastRepoContext()

Fig.2.Class diagram of the system

4.3 Class Structure

The backend logic is encapsulated in a RepoState singleton pattern. This ensures that when a user asks a follow-up
question, the system remembers the context of the repository analyzed in the previous step without requiring a database
re-fetch.

V. DETAILED IMPLEMENTATION

The implementation is divided into backend services and frontend components.

The core analysis is handled by the analyze.js route. To optimize performance, the system performs a "shallow clone”
using the --depth 1 flag. This ensures only the latest snapshot is downloaded, avoiding the heavy history data of the .git
folder.

Algorithm 1: Recursive Directory Scanning

Function buildRepoContext(directory):

Initialize empty list: files

For each item in directory:

If item is Directory AND item not in [".git", "node_modules"]:

Recursively call buildRepoContext(item)

Else If item is File:

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 730

https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15197

Add item path to files list

Return files

The actual implementation uses Node.js fs.readdirSync to execute this logic synchronously to ensure the file tree is fully
built before the response is sent to the client.

5.2 Backend: Al Reasoning Integration
The chat functionality is implemented in chat.js. It constructs a prompt using a "System Message" that defines the Al's
persona: "You are an expert software engineer. Explain the following code context to a junior developer." This prompt
engineering ensures the responses are educational rather than overly technical or cryptic.
5.3 Frontend: Interactive Dashboard
The React frontend (ui.jsx) utilizes the useState and useEffect hooks.
o File Tree: Rendered as a recursive component list.
e Code Viewer: Uses a <pre> tag with CSS styling to preserve whitespace and formatting.
e State Management: The analyze() function handles the asynchronous POST request to the server and updates
the files state upon success.
Code Snippet: Frontend Fetch Logic
async function analyze() {
const res = await fetch("http://localhost:5174/analyze", {
method: "POST",
headers: { "Content-Type": "application/json™ },
body: JSON.stringify({ repo })
bk
const data = await res.json();
setFiles(data.context.files);

}

VI. SOFTWARE TESTING

A rigorous testing strategy was employed, encompassing Unit, Integration, and System testing.
6.1 Testing Strategy
e Unit Testing: Verified individual modules, such as the buildRepoContext function, to ensure it correctly handles
nested directories and ignores specified ignore-lists.
e Integration Testing: Validated the communication between the React frontend and the Express backend,
ensuring JSON data is correctly parsed.
e System Testing: End-to-end validation using real-world GitHub repositories.

6.2 Test Case Scenarios

Table Il: Summary of Test Cases

Test Case ID = Test Scenario Expected Outcome Status
TC-01 Submit valid Public Repo URL = System clones repo and displays file tree. Pass
TC-02 Submit Invalid URL System returns "Analysis Failed" error message. Pass
TC-03 Select a .js file Code content displays in the main viewer. Pass
TC-04 Ask Al "Explain this file" Al returns a summary relevant to the selected code. = Pass
TC-05 Submit large repo (>50MB) System handles clone within timeout limits. Pass

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 731

https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026
DOI: 10.17148/IJARCCE.2026.15197

x Auto Code Analyzer x () Gitub - expressigfexpress: Fas X | € GitHub - octocat/Hello-Worid: | X | + - 8 x

€« G @ localhost5173 -4 o [

L] il @ May B YouTub

CODE VIEWER AT ASSISTANT

hitps:/igithut

2 B m O ® T X
Fig.3.0utput of the system

VII. RESULTS AND DISCUSSION

The system was evaluated on a local environment with an Intel Core i5 processor and 8GB RAM.
Performance Metrics:

o Small Repositories (<10 files): Analysis completed in < 2 seconds.

e Large Repositories (>100 files): Analysis completed in ~15 seconds. The shallow clone technique proved

effective in reducing latency.

Qualitative Analysis: The Al assistant successfully identified architectural patterns. For example, in an Express.js
project, it correctly identified server.js as the entry point and explained the middleware chain. Users reported that the tool
significantly sped up their understanding of the project structure compared to manual browsing.

VIII. CONCLUSION

The Agentic AutoCode Analyzer successfully demonstrates the efficacy of combining static analysis with Al-driven
reasoning. By automating the setup and exploration phases of code review, the system allows developers to focus on
logic and architecture. The project fulfills the critical need for "Self-Explaining Software" in an era of rapidly expanding
open-source ecosystems.

The modular design ensures scalability, while the use of widely adopted technologies (React, Node.js) ensures
maintainability. This tool serves as a powerful utility for educational institutions and software development teams,
streamlining the onboarding process and fostering deeper code comprehension.

IX. FUTURE ENHANCEMENTS

Future iterations of the system will focus on:
1. Persistent Knowledge Base: Implementing a database to cache analysis results, reducing redundant processing
for popular repositories.
2. Advanced Visualization: Integrating dependency graphs to visually map function calls and module
interdependencies.
3. Voice Interaction: Adding speech-to-text capabilities to enable hands-free code queries, improving
accessibility.

REFERENCES
[1] R. S. Pressman and B. R. Maxim, Sofitware Engineering: A Practitioner’s Approach, 8th ed., McGraw-Hill, 2015.
[2] I. Sommerville, Software Engineering, 10th ed., Pearson Education.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 732

https://ijarcce.com/
https://ijarcce.com/

IJARCCE ISSN (0) 2278-1021, ISSN (P) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Impact Factor 8.471 :: Peer-reviewed & Refereed journal :: Vol. 15, Issue 1, January 2026

DOI: 10.17148/IJARCCE.2026.15197
[4] GitHub Documentation, "Repository = Management and REST APIs,” [Online]. Available:
https://docs.github.com/en/rest. Accessed: Dec. 2025.
[5] OpenAl, "GPT-4 Technical Report," arXiv preprint arXiv:2303.08774, 2023.
[6] V. Rajlich, "Software Engineering: The Current Practice,” CRC Press, 2012.

[7] T. Mikolov et al., "Efficient Estimation of Word Representations in Vector Space," arXiv preprint arXiv:1301.3781,
2013.

© 1JARCCE This work is licensed under a Creative Commons Attribution 4.0 International License 733

https://ijarcce.com/
https://ijarcce.com/

