Abstract—In this paper, a general overview regarding neural recording, classical signal processing techniques and machine learning classification algorithms applied to monitor brain activity is presented. Currently, several approaches classified as electrical, magnetic, neuroimaging recordings and brain stimulations are available to obtain neural activity of the human brain. Among them, non-invasive methods like electroencephalography (EEG) are commonly employed, as they can provide a high degree of temporal resolution (on the order of milliseconds) and acceptable space resolution. In addition, it is simple, quick, and does not create any physical harm or stress to patients. Concerning signal processing, once the neural signals are acquired, different procedures can be applied for feature extraction. In particular, brain signals are normally processed in time, frequency, and/or space domains. The features extracted are then used for signal classification depending on its characteristics such us the mean, variance or band power. The role of machine learning in this regard has become of key importance during the last years due to its high capacity to analyze complex amounts of data.
Keywords—signal processing; machine learning; deep learning; electroencephalography (EEG); schizophrenia; autobiographical memory
| DOI: 10.17148/IJARCCE.2023.125119