Abstract: Chronic Kidney Disease (CKD) damages the kidneys. Kidneys have the capability to eliminate waste from the body. If this situation occurs, the waste gets accumulated in the body. Chronic Kidney Disease (CKD) is one ailment which could devastate the human body. It can be prevented via examining few indicators like RBC count, specific gravity value, Blood Pressure (BP), albumin levels in urine, sugar content, anaemia and WBC count. Other conditions like coronary artery disease, Diabetes Mellitus (DM) and bacterial infections could directly affect the kidneys. [1] In this paper we have collected few samples from a public hospital and selected fields have been analysed for designing a prediction model for CKD. Data analysis and visualization are carried out to improve the statistical analysis of given data. Logistic regression is carried out on the data since it contains lot of columns with categorical values. Accuracy, precision, and f1 score of the model have been measured. Various conclusions can be drawn from this interdependent data set and can be stored as historical data for future analysis.

Keywords: Chronic Kidney Disease (CKD), RBC count, Blood Pressure (BP), anaemia, WBC count, coronary artery disease, Diabetes Mellitus (DM) & bacterial infections, categorical values, data analysis & visualization


PDF | DOI: 10.17148/IJARCCE.2019.8709

Open chat
Chat with IJARCCE